我在ImageJ中使用Jython编写了一个图像分析管道。我有兴趣使用多线程来加速这个过程。基本上,管道处理多个图像(以相同的方式),我想同时处理图像。 我见过一个使用Python和多处理(Running python multiprocess for Image processing)的例子。这对Jython来说是不可能的。任何关于如何继续的帮助将非常感激(我对多线程是全新的)
答案 0 :(得分:1)
Jython书的权威指南有一章关于并发性,它为这个问题提供了一个非常彻底的答案:
答案 1 :(得分:0)
以下是我找到的解决方案,以防有用。注意 - 在我的计算机上,这并没有显着减少执行时间。
from java.util.concurrent import Callable
from java.util.concurrent import Executors, TimeUnit
# get user to select a directory and list all file names
settings = IJ.getDirectory("Choose a Directory")
for dirname, dirnames, filenames in os.walk(settings):
for filename in filenames:
SITES.append(os.path.join(dirname, filename))
# function for shutting down the pool - taken from:
# http://www.jython.org/jythonbook/en/1.0/Concurrency.html
def shutdown_and_await_termination(pool, timeout):
pool.shutdown()
try:
if not pool.awaitTermination(timeout, TimeUnit.SECONDS):
pool.shutdownNow()
if (not pool.awaitTermination(timeout, TimeUnit.SECONDS)):
print >> sys.stderr, "Pool did not terminate"
except InterruptedException, ex:
# (Re-)Cancel if current thread also interrupted
pool.shutdownNow()
# Preserve interrupt status
Thread.currentThread().interrupt()
# function that will change all images listed - in this case convert to 8bit
def help(imp):
conv = ImageConverter(imp)
conv.convertToGray8()
# make a callable interface where image will be each image in the list
# in this case each image will be opened, the help function run, which
# converts to 8bit and then the image is displayed on screen
class imageConverter(Callable):
def __init__(self):
self.test = image
def call(self):
imp = IJ.openImage(self.test)
help(imp)
imp.show()
# define the number of threads
MAX_CONCURRENT = 2
pool = Executors.newFixedThreadPool(MAX_CONCURRENT)
# define the task to do in a multithreaded way
imageConverter = [imageConverter() for image in SITES]
# use all defined threads to convert the images
pool.invokeAll(imageConverter)
shutdown_and_await_termination(pool, 5)