将音频样本添加到没有剪辑的样本中的正确方法是什么

时间:2018-05-20 15:18:46

标签: java signal-processing audio-processing

我生成不同频率的声音样本(sin /锯/三角形发生器)作为双值[-1 ... 1](1-最大幅度)的数组。我想将所有信号合并为一个。

1)如果我添加( combineWithNormalize )并最终归一化为[-1 ... 1] - 声音质量很好,但信号太沉默。

2)如果我添加使用线性( combineWithLinearDynaRangeCompression )或log( combineWithLnDynaRangeCompression )压缩 - 信号更响亮,但质量很差(金属探测)。 我究竟做错了什么?我想我错过了处理步骤。 什么是通常可接受的算法,用于添加来自几个源wav文件的音频信号并创建最终文件(哪些方法像Yamaha等合成器用于此目的)?

Additionals

- 我生成的音频(梳理两个样本:top - combineWithNormalize,bottom - combineWithLnDynaRangeCompression)。顶部信号安静,但正确。底部 - 更响亮,但可怕。 audio samples

-Java代码(草稿,未优化):

// add samples and linear normalize to [-1,1]
public static double[] combineWithNormalize( double[]... audio) {
    if (audio.length == 0) return null;
    if (audio.length == 1) return audio[0];

    int maxIdx = 0;
    // look for the longest sample
    for(double[] arr: audio)
        if (arr.length > maxIdx) maxIdx = arr.length;

    // add 0 to the end of short samples
    for(int i=0; i < audio.length; i++)
        if (audio[i].length < maxIdx) audio[i] = Arrays.copyOf(audio[i], maxIdx);

    // add all samples to result (+ find absolute max value)
    double[] result = new double[maxIdx];
    double normalizer  = 1.0;
    for (int i = 0; i < maxIdx; i++) {
        for (int j = 0; j < audio.length; j++)
            result[i] += audio[j][i];
        double res = Math.abs(result[i]);
        if (res > normalizer)
            normalizer = res;
    }

    //normalize rezult
    double coeff = 1.0/ normalizer;
    if (normalizer !=1.0)
        for (int i = 0; i < maxIdx; i++)
            result[i] *= coeff;
    return result;
}

// add samples and liners compression (all samples must be [-1..1])
public static double[] combineWithLinearDynaRangeCompression(double threshold, double[]... audio) {
    if (audio.length == 0 || threshold >= 1 || threshold < 0) return null;
    if (audio.length == 1) return audio[1];
    int maxIdx = 0;

    // look for the longest sample
    for(double[] arr: audio)
        if (arr.length > maxIdx) maxIdx = arr.length;

    // add 0 to the end of short samples
    for(int i=0; i < audio.length; i++)
        if (audio[i].length < maxIdx) audio[i] = Arrays.copyOf(audio[i], maxIdx);

    double[] result = Arrays.copyOf(audio[0], maxIdx); // Copy first sample
    double linearCoeff  = (1-threshold)/(2-threshold);

    // Add all samples to first + compression
    for (int j = 0; j < maxIdx; j++) {
        double res = 0;
        for (int i = 1; i < audio.length; i++)
            res =  result[j] + audio[i][j];
        double absRes = Math.abs(res);
        result[j] = (absRes <= threshold) ? res :  Math.signum(res) * (threshold + linearCoeff * (absRes - threshold));
    }
    return result;
}

// add samples and log compression (all samples must be [-1..1])
public static double[] combineWithLnDynaRangeCompression(double threshold, double[]... audio) {
    if (audio.length == 0 || threshold >= 1 || threshold < 0) return null;
    if (audio.length == 1) return audio[0];
    int maxIdx = 0;

    // look for the longest sample
    for(double[] arr: audio)
        if (arr.length > maxIdx) maxIdx = arr.length;

    // add 0 to the end of short samples
    for(int i=0; i < audio.length; i++)
        if (audio[i].length < maxIdx) audio[i] = Arrays.copyOf(audio[i], maxIdx);

    double[] result = Arrays.copyOf(audio[0], maxIdx); // Copy first sample
    double expCoeff = alphaT[(int) threshold*100];

    // Add all samples to first + compression
    for (int j = 0; j < maxIdx; j++) {
        double res = 0;
        for (int i = 1; i < audio.length; i++)
            res =  result[j] + audio[i][j];
        double absRes = Math.abs(res);
        result[j] = (absRes <= threshold) ? res :
                Math.signum(res) * (threshold + ( 1 - threshold) *
                    Math.log(1.0 + expCoeff * (absRes-threshold) /(2-threshold)) /  Math.log(1.0 + expCoeff ));
    }
    return result;
}

// Solutions of equations  pow(1+x,1/x)=exp((1-t)/(2-t)) for t=0, 0.01, 0.02 ... 0.99
final private static double[] alphaT =
        {
                2.51286, 2.54236, 2.57254, 2.60340, 2.63499, 2.66731, 2.70040, 2.73428, 2.76899, 2.80454,
                2.84098, 2.87833, 2.91663, 2.95592, 2.99622, 3.03758, 3.08005, 3.12366, 3.16845, 3.21449,
                3.26181, 3.31048, 3.36054, 3.41206, 3.46509, 3.51971, 3.57599, 3.63399, 3.69380, 3.75550,
                3.81918, 3.88493, 3.95285, 4.02305, 4.09563, 4.17073, 4.24846, 4.32896, 4.41238, 4.49888,
                4.58862, 4.68178, 4.77856, 4.87916, 4.98380, 5.09272, 5.20619, 5.32448, 5.44790, 5.57676,
                5.71144, 5.85231, 5.99980, 6.15437, 6.31651, 6.48678, 6.66578, 6.85417, 7.05269, 7.26213,
                7.48338, 7.71744, 7.96541, 8.22851, 8.50810, 8.80573, 9.12312, 9.46223, 9.82527, 10.21474,
                10.63353, 11.08492, 11.57270, 12.10126, 12.67570, 13.30200, 13.98717, 14.73956, 15.56907, 16.48767,
                17.50980, 18.65318, 19.93968, 21.39661, 23.05856, 24.96984, 27.18822, 29.79026, 32.87958, 36.59968,
                41.15485, 46.84550, 54.13115, 63.74946, 76.95930, 96.08797, 125.93570, 178.12403, 289.19889, 655.12084
        };

提前致谢。

1 个答案:

答案 0 :(得分:0)

我还没有对您的代码进行过测试,但我会分享一些常规提示:

  

&#34;我以不同的频率生成声音样本(sin / saw / triangle generator)&#34;

所以你在一些字节数组中有PCM样本。假设16位,每个 @ [i]保持样本 @ [i]的幅度。 [i]是您在总样本数量中的位置。

  

...&#34;作为Double值的数组&#34; ...

对于您的数字声音(PCM),您应该使用Floats。您的输入是否以16位格式发声?您可以稍后转换为16位值整数(或短裤)。

另请查看另一个答案:https://stackoverflow.com/a/10325317/2057709

问题......

  

&#34;将音频样本添加到没有剪辑的#34;

的正确方法是什么?

使用+ 添加 ing有什么问题?

final_sample[i] = ( sourceA[i] /2 ) + ( sourceB[i] /2 ); //divide by 2 to halve amplitudes

我们将2除以每个源的幅度减半。这样,即使每个Source的样本值(幅度)为1.0,在混合期间,它们也会将0.5作为其最大值。
混合final_sample现在总计为1.0。希望没有剪辑。

  

&#34; 1)如果我添加( combineWithNormalize )并最终规范化为[-1...1]
  结果:声音质量很好,但信号太沉默。&#34;

通过乘以样本值来尝试提升信号。例如:signal * 2.0 //double volume

PS:查看此文章+其他 Stack Exchange 任何想法的答案:

(1) blog: Mix Audio Samples on iOS(尝试相同的逻辑,代码很容易理解)。

(2) SO: Modify volume gain on audio sample buffer

(3) SO: Mixing PCM audio samples

(4) SO: Algorithm To Mix Sound

(5) DSP: Algorithm(s) to mix audio signals without clipping