Spark2无法在远程hdfs集群

时间:2018-05-20 09:25:09

标签: scala apache-spark apache-spark-sql hivecontext

我正在使用HiveContext通过spark 1.6.0远程查询hdfs集群上的hive表,并且能够成功完成。但是,当通过spark 2.3.0这样做时,抛出以下内容:

org.apache.spark.sql.AnalysisException: 
Table or view not found: `hiveorc_replica`.`appointment`; line 1 pos 21;
'Aggregate [unresolvedalias(count(1), None)]
+- 'UnresolvedRelation `hiveorc_replica`.`appointment`

通过这条消息,我只能解释它可能在本地而不是远程搜索数据库的一件事。我正在使用:

创建一个spark上下文
val conf = new SparkConf().setAppName("SparkApp").setMaster("local")
val sc=new SparkContext(conf)
val hc = new HiveContext(sc)
val actualRecordCountHC = hc.sql("select count(*) from hiveorc_replica.appointment")
val records = hc.sql("select * from hiveorc_replica.appointment")

所有配置文件都出现在我项目的资源文件夹中。以下是我的hive-site.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!--Autogenerated by Cloudera Manager-->
<configuration>
  <property>
    <name>hive.metastore.uris</name>
    <value>thrift://fqdn:9083</value>
  </property>
  <property>
    <name>hive.metastore.client.socket.timeout</name>
    <value>300</value>
  </property>
  <property>
    <name>hive.metastore.warehouse.dir</name>
    <value>/user/hive/warehouse</value>
  </property>
  <property>
    <name>hive.warehouse.subdir.inherit.perms</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.auto.convert.join</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.auto.convert.join.noconditionaltask.size</name>
    <value>20971520</value>
  </property>
  <property>
    <name>hive.optimize.bucketmapjoin.sortedmerge</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.smbjoin.cache.rows</name>
    <value>10000</value>
  </property>
  <property>
    <name>hive.server2.logging.operation.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.server2.logging.operation.log.location</name>
    <value>/var/log/hive/operation_logs</value>
  </property>
  <property>
    <name>mapred.reduce.tasks</name>
    <value>-1</value>
  </property>
  <property>
    <name>hive.exec.reducers.bytes.per.reducer</name>
    <value>67108864</value>
  </property>
  <property>
    <name>hive.exec.copyfile.maxsize</name>
    <value>33554432</value>
  </property>
  <property>
    <name>hive.exec.reducers.max</name>
    <value>1099</value>
  </property>
  <property>
    <name>hive.vectorized.groupby.checkinterval</name>
    <value>4096</value>
  </property>
  <property>
    <name>hive.vectorized.groupby.flush.percent</name>
    <value>0.1</value>
  </property>
  <property>
    <name>hive.compute.query.using.stats</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.vectorized.execution.enabled</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.vectorized.execution.reduce.enabled</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.merge.mapfiles</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.merge.mapredfiles</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.cbo.enable</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.fetch.task.conversion</name>
    <value>minimal</value>
  </property>
  <property>
    <name>hive.fetch.task.conversion.threshold</name>
    <value>268435456</value>
  </property>
  <property>
    <name>hive.limit.pushdown.memory.usage</name>
    <value>0.1</value>
  </property>
  <property>
    <name>hive.merge.sparkfiles</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.merge.smallfiles.avgsize</name>
    <value>16777216</value>
  </property>
  <property>
    <name>hive.merge.size.per.task</name>
    <value>268435456</value>
  </property>
  <property>
    <name>hive.optimize.reducededuplication</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.optimize.reducededuplication.min.reducer</name>
    <value>4</value>
  </property>
  <property>
    <name>hive.map.aggr</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.map.aggr.hash.percentmemory</name>
    <value>0.5</value>
  </property>
  <property>
    <name>hive.optimize.sort.dynamic.partition</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.execution.engine</name>
    <value>mr</value>
  </property>
  <property>
    <name>spark.executor.memory</name>
    <value>268435456</value>
  </property>
  <property>
    <name>spark.driver.memory</name>
    <value>268435456</value>
  </property>
  <property>
    <name>spark.executor.cores</name>
    <value>1</value>
  </property>
  <property>
    <name>spark.yarn.driver.memoryOverhead</name>
    <value>26</value>
  </property>
  <property>
    <name>spark.yarn.executor.memoryOverhead</name>
    <value>26</value>
  </property>
  <property>
    <name>spark.dynamicAllocation.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>spark.dynamicAllocation.initialExecutors</name>
    <value>1</value>
  </property>
  <property>
    <name>spark.dynamicAllocation.minExecutors</name>
    <value>1</value>
  </property>
  <property>
    <name>spark.dynamicAllocation.maxExecutors</name>
    <value>2147483647</value>
  </property>
  <property>
    <name>hive.metastore.execute.setugi</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.support.concurrency</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.zookeeper.quorum</name>
    <value>fqdn</value>
  </property>
  <property>
    <name>hive.zookeeper.client.port</name>
    <value>2181</value>
  </property>
  <property>
    <name>hive.zookeeper.namespace</name>
    <value>hive_zookeeper_namespace_CD-HIVE-WAyDdBlP</value>
  </property>
  <property>
    <name>hive.cluster.delegation.token.store.class</name>
    <value>org.apache.hadoop.hive.thrift.MemoryTokenStore</value>
  </property>
  <property>
    <name>hive.server2.enable.doAs</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.metastore.sasl.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.metastore.kerberos.principal</name>
    <value>hive/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>hive.server2.authentication.kerberos.principal</name>
    <value>hive/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>spark.shuffle.service.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.server2.authentication</name>
    <value>LDAP</value>
  </property>
</configuration>

fqdn在运行时被远程hdfs FQDN取代。此外,当我在存在hive数据库的远程集群本身上运行相同的代码时,通过spark2,它会给出结果。 那么,我如何远程运行代码?

1 个答案:

答案 0 :(得分:0)

为spark2创建spark会话完成了这项工作。在看到日志时,我发现无论如何它无法从hive-site.xml获取hive.metastore.uris的值,并通过spark-session设置它就是答案。

val spark = SparkSession.builder.master("local").config("hive.metastore.uris", "thrift://"+hdfsFQDN+":9083").enableHiveSupport.getOrCreate

但是,我仍然怀疑为什么当通过HiveContext运行时能够从资源获取文件时,hive.metastore.uri无法获得远程运行的价值?