我有4个项目的每日销售数据集,在4个不同的特许经营店中销售。
我必须建立一个模型来预测所有特许经营权的所有这4个项目的每周销售额。
我计划使用一个基本模型进行预测
reg = linear_model.Ridge(alpha=1)
我的问题是如何编码将该模型应用于所有4种产品和特许经营权。
我将非常感谢您花时间和精力帮助我。谢谢
我的表格如下
DepotName Product Date SalesUnits
A A1 2015-01-23 2.0
A A2 2015-01-23 225.0
A A3 2015-01-23 120.0
A A4 2015-01-23 72.0
B A1 2015-01-23 90.0
B A2 2015-01-23 2.0
B A3 2015-01-23 1.0
B A4 2015-01-23 2.0
C A1 2015-01-23 1.0
C A2 2015-01-23 1.0
C A3 2015-01-23 4.0
C A4 2015-01-23 8040.0
D A1 2015-01-23 1590.0
D A2 2015-01-23 1.0
D A3 2015-01-23 1590.0
D A4 2015-01-23 1.0
A A1 2015-01-24 2.0
A A2 2015-01-24 225.0
A A3 2015-01-24 120.0
A A4 2015-01-24 72.0
B A1 2015-01-24 90.0
B A2 2015-01-24 2.0
B A3 2015-01-24 1.0
B A4 2015-01-24 2.0
C A1 2015-01-24 1.0
C A2 2015-01-24 1.0
C A3 2015-01-24 4.0
C A4 2015-01-24 8040.0
D A1 2015-01-24 1590.0
D A2 2015-01-24 1.0
D A3 2015-01-24 1590.0
D A4 2015-01-24 1.0
答案 0 :(得分:1)
只需在指标上运行groupby
操作:
for g in data.groupby(['DepotName', 'Product']):
# g[0]: TUPLE OF CURRENT GROUP NAMES
# g[1]: DATAFRAME OF CURRENT GROUP
predictors = [... list of column names ...]
reg = linear_model.Ridge(alpha=1)
reg.fit(g[1][predictors], g[1]['SalesUnits'])
y_pred = reg.predict(g[1][predictors])
# ...