我使用frame['date_created'].value_counts().sort_index()
2013-10 1
2014-12 1
2015-02 1
2015-03 1
2015-09 1
2016-02 6
2016-03 1
2017-05 5
2017-07 2
2017-08 13
2017-09 40
2017-10 47
2017-11 40
2017-12 26
2018-01 16
但我希望过滤此系列以获取2017年及以上日期的数据。我该如何过滤这个?
答案 0 :(得分:2)
nonce
切片直截了当,如果你正在处理字符串索引,那么切片,强制转换和比较:
(...)
#include <cs50.h>
#include <string.h>
(...)
// extract the first two characters of 'hash' (== nonce/salt)
string hash = "14dJperBYV6zU";
char nonceAsArray[2];
for (int i = 0; i < 2; i++)
{
nonceAsArray[i] = hash[i];
}
string nonce = concatenateCharacters(nonceAsArray, 2);
printf("first hash: %s\n", crypt("myPassword", "14"));
printf("second hash: %s\n", crypt("myPassword", nonce));
// connects characters to strings
string concatenateCharacters(char characters[], int arraySize)
{
char terminator[1] = {'\0'};
// create array that can store the password and to which the terminator can be appended (hence +1)
char bigEnoughArray[arraySize + 1];
for (int i = 0; i < arraySize; i++)
{
bigEnoughArray[i] = characters[i];
}
return strcat(bigEnoughArray, terminator);
}
str[...]
v = frame['date_created'].value_counts().sort_index()
v_2017 = v[v.index.str[:4].astype(int) >= 2017]
或者,投射到日期时间 -
print(v_2017)
2017-05 5
2017-07 2
2017-08 13
2017-09 40
2017-10 47
2017-11 40
2017-12 26
2018-01 16
Name: 1, dtype: int64
答案 1 :(得分:0)
这是一种方法:
import pandas as pd
df = pd.DataFrame({'date_created': ['2013-10','2014-12',
'2015-02','2015-03',
'2015-09','2016-02',
'2016-03','2017-05',
'2017-07','2017-08',
'2017-09','2017-10',
'2017-11','2017-12',
'2018-01'],
'count': [1, 1, 1, 1, 1, 6, 1, 5, 2, 13, 40, 47, 40, 26, 16]})
print(df[df['date_created'].apply(lambda x: int(x.split('-')[0])).gt(2016)])
# count date_created
#7 5 2017-05
#8 2 2017-07
#9 13 2017-08
#10 40 2017-09
#11 47 2017-10
#12 40 2017-11
#13 26 2017-12
#14 16 2018-01