`private void sgmnt(Mat mImg){
Imgproc.cvtColor(msImg, m2, Imgproc.COLOR_RGB2GRAY);
Mat mRgba = mImg;
Mat mGray = m2;
Scalar CONTOUR_COLOR = new Scalar(1, 255, 128, 0);
//Scalar CONTOUR_COLOR = new Scalar(255);
MatOfKeyPoint keyPoint = new MatOfKeyPoint();
List<KeyPoint> listPoint = new ArrayList<>();
KeyPoint kPoint = new KeyPoint();
Mat mask = Mat.zeros(mGray.size(), CvType.CV_8UC1);
int rectanx1;
int rectany1;
int rectanx2;
int rectany2;
int imgSize = mGray.height() * mGray.width();
Scalar zeros = new Scalar(0,0,0);
List<MatOfPoint> contour2 = new ArrayList<MatOfPoint>();
Mat kernel = new Mat(1, 50, CvType.CV_8UC1, Scalar.all(255));
Mat morByte = new Mat();
Mat hierarchy = new Mat();
Rect rectan3 = new Rect();
FeatureDetector detector = FeatureDetector.create(FeatureDetector.MSER);
detector.detect(mGray, keyPoint);
listPoint = keyPoint.toList();
for(int ind = 0; ind < listPoint.size(); ++ind) {
kPoint = listPoint.get(ind);
rectanx1 = (int) (kPoint.pt.x - 0.5 * kPoint.size);
rectany1 = (int) (kPoint.pt.y - 0.5 * kPoint.size);
rectanx2 = (int) (kPoint.size);
rectany2 = (int) (kPoint.size);
if (rectanx1 <= 0) {
rectanx1 = 1;
}
if (rectany1 <= 0) {
rectany1 = 1;
}
if ((rectanx1 + rectanx2) > mGray.width()) {
rectanx2 = mGray.width() - rectanx1;
}
if ((rectany1 + rectany2) > mGray.height()) {
rectany2 = mGray.height() - rectany1;
}
Rect rectant = new Rect(rectanx1, rectany1, rectanx2, rectany2);
try{
Mat roi = new Mat(mask, rectant);
roi.setTo(CONTOUR_COLOR);
}
catch (Exception ex) {
Log.d("mylog", "mat roi error " + ex.getMessage());
}
}
Imgproc.morphologyEx(mask, morByte, Imgproc.MORPH_DILATE, kernel);
Imgproc.findContours(morByte, contour2, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_NONE);
for(int i = 0; i<contour2.size(); ++i){
rectan3 = Imgproc.boundingRect(contour2.get(i));
if(rectan3.area() > 0.5 * imgSize || rectan3.area()<100 || rectan3.width / rectan3.height < 2){
Mat roi = new Mat(morByte, rectan3);
roi.setTo(zeros);
}else{
Imgproc.rectangle(mRgba, rectan3.br(), rectan3.tl(), CONTOUR_COLOR);
}
}
}Output`[![ ][1]][![]][1]
在分段按钮中,我使用opencv lib使用MSER / Maximally stable extremal regions。如何使用某些算法增强分割?在传递给tesseract的文本识别之前,我应该按字符,单词或某些平滑等对其进行分段。这是我最后的学校项目。