我加载了一个word2vec格式文件,我想计算向量之间的相似性,但我不知道这个问题意味着什么。
from gensim.models import Word2Vec
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import KeyedVectors
import numpy as np
model = KeyedVectors.load_word2vec_format('it-vectors.100.5.50.w2v')
similarities = cosine_similarity(model.vectors)
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
<ipython-input-54-1d4e62f55ebf> in <module>()
----> 1 similarities = cosine_similarity(model.vectors)
/usr/local/lib/python3.5/dist-packages/sklearn/metrics/pairwise.py in cosine_similarity(X, Y, dense_output)
923 Y_normalized = normalize(Y, copy=True)
924
--> 925 K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output)
926
927 return K
/usr/local/lib/python3.5/dist-packages/sklearn/utils/extmath.py in safe_sparse_dot(a, b, dense_output)
138 return ret
139 else:
--> 140 return np.dot(a, b)
141
142
MemoryError:
这意味着什么? 谢谢!
答案 0 :(得分:4)
MemoryError
表示没有足够的内存来完成操作。
'it-vectors.100.5.50.w2v'设置了多少个向量?
请注意cosine_similarity()
创建一个(n x n)结果矩阵。因此,如果您的集合中有100,000个向量,则需要一个大小为的结果数组:
100,000^2 * 4 bytes/float = 40GB
你有那么多可寻址的记忆吗?