我在一个示例iOS应用程序中使用CoreML和我的自定义训练对象检测模型。在视频帧上使用时,该模型能够很好地执行并显示正确的类检测和边界框。
在图像上使用时,边界框检测全部错误,所有预测都归类为1类。
两种情况下的模型设置是相同的。
模型预测调用被视为
func processClassifications(for request: VNRequest, error: Error?) -> [Prediction]? {
let results = request.results
let results1 = results as! [VNCoreMLFeatureValueObservation]
let results2 = try? postprocess().prediction( output: results1[0].featureValue.multiArrayValue! )
// Some processing from results2 -> predictions
return predictions
}
视频:
func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)
// self.visionModel is same as the " MODEL_TF2keras_OutConv12().model " below...
guard let visionModel = self.visionModel
var requestOptions:[VNImageOption : Any] = [:]
if let cameraIntrinsicData = CMGetAttachment(sampleBuffer, kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix, nil) {
requestOptions = [.cameraIntrinsics:cameraIntrinsicData]
}
let orientation = CGImagePropertyOrientation(rawValue: UInt32(EXIFOrientation.rightTop.rawValue))
let trackingRequest = VNCoreMLRequest(model: visionModel) { (request, error) in
guard let predictions = self.processClassifications(for: request, error: error) else { return }. // This function performs the coreML model on the frame and return the predictions.
}
trackingRequest.imageCropAndScaleOption = VNImageCropAndScaleOption.centerCrop
let imageRequestHandler = VNImageRequestHandler(cvPixelBuffer: pixelBuffer, orientation: orientation!, options: requestOptions)
try imageRequestHandler.perform([trackingRequest])
}
}
对于单张图像,预测处理为:
lazy var classificationRequest: VNCoreMLRequest = {
let model = try VNCoreMLModel(for: MODEL_TF2keras_OutConv12().model)
let request = VNCoreMLRequest(model: model, completionHandler: { [weak self] request, error in
let predictions = self?.processClassifications(for: request, error: error)
})
request.imageCropAndScaleOption = VNImageCropAndScaleOption.centerCrop
return request
}
}()
func updateClassifications(for image: UIImage) {
let orientation = CGImagePropertyOrientation(image.imageOrientation)
guard let ciImage = CIImage(image: image)
let handler = VNImageRequestHandler(ciImage: ciImage, orientation: orientation)
handler.perform([self.classificationRequest])
}
根据我的理解,问题在于在视频案例中使用CVPixelbuffer,在单个图像案例中使用CIImage。
问题是:当函数和模型调用相同时,为什么会出现这种差异。
我该如何解决这个问题?
感谢您的帮助。
答案 0 :(得分:0)
包括关键错误
图像的方向在转换中混合。视频序列保留了方向。
转换期间模型输出已损坏。从第一步开始的重新转换解决了这个问题。因此,我自己的错误,然而一个重要的观察。由于从一个平台转换到另一个平台的步骤太多,可能的错误来源是多方面的,这有助于从第一步开始。
图像大小调整和应用程序ImageView调整大小正在影响边界框的可视化。因此,检查这些很重要。我做了天真的推断,预测是不正确的,而可视化是不正确的。
希望这有帮助。