dplyr错误:R中的长度(行)== 1不为TRUE

时间:2018-05-16 16:59:15

标签: r filter dplyr plyr

作为一些背景,我使用的数据来自某些变量的前三名。我需要能够计算1s,2s,3s和NA(#ppl谁没有将它包含在前3名中)。

我有我的数据框LikelyRenew_ReasonB,我使用dplyr来过滤特定的年份和状态,它正常工作/没有错误。

LikelyRenew_ReasonB <-    
  LikelyRenew_Reason %>%
      filter(year ==1, status ==2)

> LikelyRenew_ReasonB
  cost products commun reimburse policy discount status year
1   NA       NA     NA        NA     NA       NA      2    1
2   NA       NA      1         2     NA       NA      2    1
3    2       NA      3        NA      1       NA      2    1
4   NA       NA     NA         1     NA       NA      2    1
5   NA       NA      3         1      2       NA      2    1
6   NA       NA      2         1      3       NA      2    1
7   NA       NA      1        NA     NA       NA      2    1
8   NA        2      3         1     NA       NA      2    1
9    3       NA      1        NA      2       NA      2    1

然而,当我尝试获取摘要计数时,它会抛出错误:错误:长度(行)== 1在R中不为TRUE。我不知道为什么会出现此错误,如果我改变了我的过滤器年份== 3,状态== 1,然后它工作正常。关于我在这里缺少什么的想法?

    LikelyRenew_ReasonB  %>%
          summarize(
            costC = count(cost), 
            productsC = count(products),
            communC = count(commun),
            reimburseC = count(reimburse),
            policyC = count(policy),
            discountC = count(discount))

这是LikelyRenew_ReasonB的样子(*请注意这是当我有年= = 3,状态== 1作为过滤器时的输入头)

> dput(head(LikelyRenew_ReasonB))
structure(list(costC = structure(list(x = c(1, 2, 3, NA), freq = c(10L, 
11L, 17L, 149L)), .Names = c("x", "freq"), row.names = c(NA, 
4L), class = "data.frame"), productsC = structure(list(x = c(1, 
2, 3, NA), freq = c(31L, 40L, 30L, 86L)), .Names = c("x", "freq"
), row.names = c(NA, 4L), class = "data.frame"), communC = structure(list(
x = c(1, 2, 3, NA), freq = c(51L, 50L, 34L, 52L)), .Names = c("x", 
"freq"), row.names = c(NA, 4L), class = "data.frame"), reimburseC = 
structure(list(
x = c(1, 2, 3, NA), freq = c(42L, 26L, 25L, 94L)), .Names = c("x", 
"freq"), row.names = c(NA, 4L), class = "data.frame"), policyC = 
structure(list(
x = c(1, 2, 3, NA), freq = c(31L, 25L, 28L, 103L)), .Names = c("x", 
"freq"), row.names = c(NA, 4L), class = "data.frame"), discountC = 
structure(list(
x = c(1, 2, 3, NA), freq = c(2L, 2L, 3L, 180L)), .Names = c("x", 
 "freq"), row.names = c(NA, 4L), class = "data.frame")), .Names = c("costC", 
"productsC", "communC", "reimburseC", "policyC", "discountC"), row.names = 
c(NA, 
 4L), class = "data.frame")

这是一个工作&#39;的例子。同样,问题是出于某种原因,当我将状态/年更改为不同的兴趣段时,我收到错误。

> LikelyRenew_ReasonB <-    
+   LikelyRenew_Reason %>%
+   dplyr::filter(year ==3, status ==1) %>%
+   plyr::summarize(
+                 costC = count(cost), 
+                 productsC = count(products),
+                 communC = count(commun),
+                 reimburseC = count(reimburse),
+                 policyC = count(policy),
+                 discountC = count(discount))

以下是正确输出的示例

    > LikelyRenew_ReasonB
    costC.x costC.freq productsC.x productsC.freq
1       1         10           1             31
2       2         11           2             40
3       3         17           3             30
4      NA        149          NA             86

1 个答案:

答案 0 :(得分:-1)

Count()是summarize()https://dplyr.tidyverse.org/reference/tally.html的包装器。也许你想要的是使用sum()而不是count()?

LikelyRenew_ReasonB %>%
    summarize(
        costC = sum(cost, na.rm = TRUE),
        productsC = sum(products, na.rm = TRUE),
        communC = sum(commun, na.rm = TRUE),
        reimburseC = sum(reimburse, na.rm = TRUE),
        policyC = sum(policy, na.rm = TRUE),
        discountC = sum(discount, na.rm = TRUE))