我编写了风暴拓扑,使用kafka spout从kafka获取数据,它在我的本地环境中运行良好但在集群中
我收到以下错误:
2018-05-16 18:25:59.358 o.a.s.k.ZkCoordinator Thread-25-kafkaSpout-executor [20 20] [INFO]任务[1/1]刷新分区管理器连接 2018-05-16 18:25:59.359 oaskDynamicBrokersReader Thread-25-kafkaSpout-executor [20 20] [INFO]从zookeeper读取分区信息:GlobalPartitionInformation {topic = data-ops,partitionMap = {0 = uat-datalake-node2 .ORG:6667}} 2018-05-16 18:25:59.359 oaskKafkaUtils Thread-25-kafkaSpout-executor [20 20] [INFO]任务[1/1]已分配[Partition {host = uat-datalake-node2.org:6667,topic = data-ops,partition = 0}] 2018-05-16 18:25:59.360 o.a.s.k.ZkCoordinator Thread-25-kafkaSpout-executor [20 20] [INFO]任务[1/1]删除分区管理器:[] 2018-05-16 18:25:59.360 o.a.s.k.ZkCoordinator Thread-25-kafkaSpout-executor [20 20] [INFO]任务[1/1]新的分区管理员:[] 2018-05-16 18:25:59.360 o.a.s.k.ZkCoordinator Thread-25-kafkaSpout-executor [20 20] [INFO]任务[1/1]完成刷新 2018-05-16 18:25:59.361 k.c.SimpleConsumer Thread-25-kafkaSpout-executor [20 20] [INFO] 因错误重新连接: java.nio.channels.ClosedChannelException 在kafka.network.BlockingChannel.send(BlockingChannel.scala:110)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.liftedTree1 $ 1(SimpleConsumer.scala:85)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.kafka $ consumer $ SimpleConsumer $$ sendRequest(SimpleConsumer.scala:83)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply $ mcV $ sp(SimpleConsumer.scala:132)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply(SimpleConsumer.scala:132)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply(SimpleConsumer.scala:132)[kafka_2.10-0.10.2.1.jar:?] 在kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply $ mcV $ sp(SimpleConsumer.scala:131)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply(SimpleConsumer.scala:131)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply(SimpleConsumer.scala:131)[kafka_2.10-0.10.2.1.jar:?] 在kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:130)[kafka_2.10-0.10.2.1.jar:?] at kafka.javaapi.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:47)[kafka_2.10-0.10.2.1.jar:?] 在org.apache.storm.kafka.KafkaUtils.fetchMessages(KafkaUtils.java:191)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.PartitionManager.fill(PartitionManager.java:189)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.PartitionManager.next(PartitionManager.java:138)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:135)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.daemon.executor $ fn__6505 $ fn__6520 $ fn__6551.invoke(executor.clj:651)[storm-core-1.0.1.2.5.3.0-37.jar:1.0.1.2.5.3.0- 37] at org.apache.storm.util $ async_loop $ fn__554.invoke(util.clj:484)[storm-core-1.0.1.2.5.3.0-37.jar:1.0.1.2.5.3.0-37] 在clojure.lang.AFn.run(AFn.java:22)[clojure-1.7.0.jar:?] 在java.lang.Thread.run(Thread.java:748)[?:1.8.0_144] 2018-05-16 18:26:09.372 o.a.s.k.KafkaUtils Thread-25-kafkaSpout- executor [20 20] [WARN]获取消息时出现网络错误: java.net.SocketTimeoutException 在sun.nio.ch.SocketAdaptor $ SocketInputStream.read(SocketAdaptor.java:211)〜[?:1.8.0_144] at sun.nio.ch.ChannelInputStream.read(ChannelInputStream.java:103)〜[?:1.8.0_144] 在java.nio.channels.Channels $ ReadableByteChannelImpl.read(Channels.java:385)〜[?:1.8.0_144] 在org.apache.kafka.common.network.NetworkReceive.readFromReadableChannel(NetworkReceive.java:81)〜[kafka-clients-0.10.2.1.jar:?] 在kafka.network.BlockingChannel.readCompletely(BlockingChannel.scala:129)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.network.BlockingChannel.receive(BlockingChannel.scala:120)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.liftedTree1 $ 1(SimpleConsumer.scala:99)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.kafka $ consumer $ SimpleConsumer $$ sendRequest(SimpleConsumer.scala:83)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply $ mcV $ sp(SimpleConsumer.scala:132)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply(SimpleConsumer.scala:132)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply(SimpleConsumer.scala:132)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply $ mcV $ sp(SimpleConsumer.scala:131)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply(SimpleConsumer.scala:131)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply(SimpleConsumer.scala:131)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:130)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.javaapi.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:47)〜[kafka_2.10-0.10.2.1.jar:?] 在org.apache.storm.kafka.KafkaUtils.fetchMessages(KafkaUtils.java:191)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.PartitionManager.fill(PartitionManager.java:189)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.PartitionManager.next(PartitionManager.java:138)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:135)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.daemon.executor $ fn__6505 $ fn__6520 $ fn__6551.invoke(executor.clj:651)[storm-core-1.0.1.2.5.3.0-37.jar:1.0.1.2.5.3.0- 37] at org.apache.storm.util $ async_loop $ fn__554.invoke(util.clj:484)[storm-core-1.0.1.2.5.3.0-37.jar:1.0.1.2.5.3.0-37] 在clojure.lang.AFn.run(AFn.java:22)[clojure-1.7.0.jar:?] 在java.lang.Thread.run(Thread.java:748)[?:1.8.0_144] 2018-05-16 18:26:09.373 o.a.s.k.KafkaSpout Thread-25-kafkaSpout-executor [20 20] [WARN]获取失败 org.apache.storm.kafka.FailedFetchException:java.net.SocketTimeoutException 在org.apache.storm.kafka.KafkaUtils.fetchMessages(KafkaUtils.java:199)〜[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.PartitionManager.fill(PartitionManager.java:189)〜[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.PartitionManager.next(PartitionManager.java:138)〜[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.kafka.KafkaSpout.nextTuple(KafkaSpout.java:135)[storm-kafka-1.0.1.jar:1.0.1] 在org.apache.storm.daemon.executor $ fn__6505 $ fn__6520 $ fn__6551.invoke(executor.clj:651)[storm-core-1.0.1.2.5.3.0-37.jar:1.0.1.2.5.3.0- 37] at org.apache.storm.util $ async_loop $ fn__554.invoke(util.clj:484)[storm-core-1.0.1.2.5.3.0-37.jar:1.0.1.2.5.3.0-37] 在clojure.lang.AFn.run(AFn.java:22)[clojure-1.7.0.jar:?] 在java.lang.Thread.run(Thread.java:748)[?:1.8.0_144] 引起:java.net.SocketTimeoutException 在sun.nio.ch.SocketAdaptor $ SocketInputStream.read(SocketAdaptor.java:211)〜[?:1.8.0_144] at sun.nio.ch.ChannelInputStream.read(ChannelInputStream.java:103)〜[?:1.8.0_144] 在java.nio.channels.Channels $ ReadableByteChannelImpl.read(Channels.java:385)〜[?:1.8.0_144] 在org.apache.kafka.common.network.NetworkReceive.readFromReadableChannel(NetworkReceive.java:81)〜[kafka-clients-0.10.2.1.jar:?] 在kafka.network.BlockingChannel.readCompletely(BlockingChannel.scala:129)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.network.BlockingChannel.receive(BlockingChannel.scala:120)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.liftedTree1 $ 1(SimpleConsumer.scala:99)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.kafka $ consumer $ SimpleConsumer $$ sendRequest(SimpleConsumer.scala:83)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply $ mcV $ sp(SimpleConsumer.scala:132)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply(SimpleConsumer.scala:132)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1 $$ anonfun $ apply $ mcV $ sp $ 1.apply(SimpleConsumer.scala:132)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply $ mcV $ sp(SimpleConsumer.scala:131)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply(SimpleConsumer.scala:131)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer $$ anonfun $ fetch $ 1.apply(SimpleConsumer.scala:131)〜[kafka_2.10-0.10.2.1.jar:?] 在kafka.metrics.KafkaTimer.time(KafkaTimer.scala:33)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:130)〜[kafka_2.10-0.10.2.1.jar:?] at kafka.javaapi.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:47)〜[kafka_2.10-0.10.2.1.jar:?] 在org.apache.storm.kafka.KafkaUtils.fetchMessages(KafkaUtils.java:191)〜[storm-kafka-1.0.1.jar:1.0.1] ......还有7个
答案 0 :(得分:0)
当Storm工作人员试图从Kafka经纪人那里读取时,看起来你有一个超时。也许他们之间的联系是片状还是缓慢?
也就是说,堆栈跟踪似乎表明消费者已经重新连接,所以如果这种情况很少发生,那么你可能只是对工人和Kafka之间的联系打了个嗝。
如果这种情况经常发生并且您确定连接稳定,我会尝试在https://kafka.apache.org/contact处查询Kafka邮件列表。如果您发布了问题以及您正在使用的Kafka版本,他们可能会告诉您是否存在可能导致消费者套接字超时的问题。