我已经在Unity中使用Watson Assistant,语音到文本和文本到语音进行了应用,用户可以在不同的城市找到所述城市之间的可用机票。对话和互动效果很好,但有时我会遇到一些问题,即当用户说出来时,某些城市无法识别。例如柏林,有时它了解柏林和另一次燃烧。巴黎,伦敦和雅加达等其他城市也是如此。
因此,城市名称的检测并不像我希望的那样准确。但我在一些帖子中看到,您可以制作自己的自定义模型,以改善对这些单词的检测。但我不知道如何设置,制作自己的自定义模型以及如何将这些城市添加到模型中并进行训练。是否有可能在Unity C#脚本中这样做,我将如何开始呢?我可以看一些C#示例吗?任何帮助将不胜感激。
这些是我找到的一些链接和信息,但不知道如何在C#中实现它,并且出于我自己的目的,提高城市检测的准确性。
DwAnswers1 DwAnswers2 StackOverflow IBM clouds docs Medium cURL tutorial
这是我在Watson API和Unity之间进行交互的C#脚本。我想我也必须在这里添加自定义模型,但我不知道我是否应该在其中创建自定义模型,或者是否需要单独的脚本。
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using IBM.Watson.DeveloperCloud.Services.TextToSpeech.v1;
using IBM.Watson.DeveloperCloud.Services.Conversation.v1;
using IBM.Watson.DeveloperCloud.Services.ToneAnalyzer.v3;
using IBM.Watson.DeveloperCloud.Services.SpeechToText.v1;
using IBM.Watson.DeveloperCloud.Logging;
using IBM.Watson.DeveloperCloud.Utilities;
using IBM.Watson.DeveloperCloud.Connection;
using IBM.Watson.DeveloperCloud.DataTypes;
using MiniJSON;
using UnityEngine.UI;
using FullSerializer;
public class WatsonAgent : MonoBehaviour
{
public string literalEntityCity;
public string destinationCity;
public string departureCity;
public string dateBegin;
public string dateEnd;
public WeatherJSON weather;
public GameObject FlightInfo;
[SerializeField]
private fsSerializer _serializer = new fsSerializer();
[System.Serializable]
public class CredentialInformation
{
public string username, password, url;
}
[System.Serializable]
public class Services
{
public CredentialInformation
textToSpeech,
conversation,
speechToText;
}
[Header("Credentials")]
[Space]
public Services
serviceCredentials;
[Space]
[Header("Agent voice settings")]
[Space]
public AudioSource
voiceSource;
public VoiceType
voiceType;
[Space]
[Header("Conversation settings")]
[Space]
public string
workspaceId;
[Space]
[Header("Feedback fields")]
[Space]
public Text
speechToTextField;
public Text
conversationInputField;
public Text
conversationOutputField;
public string
saying;
// services
SpeechToText
speechToText;
private int
recordingRoutine = 0,
recordingBufferSize = 1,
recordingHZ = 22050;
private string
microphoneID = null;
private AudioClip
recording = null;
TextToSpeech
textToSpeech;
Conversation
conversation;
private Dictionary<string, object>
conversationContext = null;
private void Start()
{
PrepareCredentials();
Initialize();
}
void PrepareCredentials()
{
speechToText = new SpeechToText(GetCredentials(serviceCredentials.speechToText));
textToSpeech = new TextToSpeech(GetCredentials(serviceCredentials.textToSpeech));
conversation = new Conversation(GetCredentials(serviceCredentials.conversation));
}
Credentials GetCredentials(CredentialInformation credentialInformation)
{
return new Credentials(credentialInformation.username, credentialInformation.password, credentialInformation.url);
}
void Initialize()
{
conversation.VersionDate = "2017-05-26";
Active = true;
StartRecording();
}
// speech to text
public bool Active
{
get { return speechToText.IsListening; }
set
{
if (value && !speechToText.IsListening)
{
speechToText.DetectSilence = true;
speechToText.EnableWordConfidence = true;
speechToText.EnableTimestamps = true;
speechToText.SilenceThreshold = 0.01f;
speechToText.MaxAlternatives = 0;
speechToText.EnableInterimResults = true;
speechToText.OnError = OnSpeechError;
speechToText.InactivityTimeout = -1;
speechToText.ProfanityFilter = false;
speechToText.SmartFormatting = true;
speechToText.SpeakerLabels = false;
speechToText.WordAlternativesThreshold = null;
speechToText.StartListening(OnSpeechRecognize);
//speechToText.CustomizationId = "customID"; // I guess i have to add the custom training model here with the customID
//speechToText.CustomizationWeight(0.2); //
}
else if (!value && speechToText.IsListening)
{
speechToText.StopListening();
}
}
}
private void StartRecording()
{
if (recordingRoutine == 0)
{
UnityObjectUtil.StartDestroyQueue();
recordingRoutine = Runnable.Run(RecordingHandler());
}
}
private void StopRecording()
{
if (recordingRoutine != 0)
{
Microphone.End(microphoneID);
Runnable.Stop(recordingRoutine);
recordingRoutine = 0;
}
}
private void OnSpeechError(string error)
{
Active = false;
Log.Debug("ExampleStreaming.OnError()", "Error! {0}", error);
}
private IEnumerator RecordingHandler()
{
recording = Microphone.Start(microphoneID, true, recordingBufferSize, recordingHZ);
yield return null; // let _recordingRoutine get set..
if (recording == null)
{
StopRecording();
yield break;
}
bool bFirstBlock = true;
int midPoint = recording.samples / 2;
float[] samples = null;
while (recordingRoutine != 0 && recording != null)
{
int writePos = Microphone.GetPosition(microphoneID);
if (writePos > recording.samples || !Microphone.IsRecording(microphoneID))
{
Debug.Log("Microphone disconnected.");
StopRecording();
yield break;
}
if ((bFirstBlock && writePos >= midPoint) || (!bFirstBlock && writePos < midPoint))
{
// front block is recorded, make a RecordClip and pass it onto our callback.
samples = new float[midPoint];
recording.GetData(samples, bFirstBlock ? 0 : midPoint);
AudioData record = new AudioData();
record.MaxLevel = Mathf.Max(Mathf.Abs(Mathf.Min(samples)), Mathf.Max(samples));
record.Clip = AudioClip.Create("Recording", midPoint, recording.channels, recordingHZ, false);
record.Clip.SetData(samples, 0);
speechToText.OnListen(record);
bFirstBlock = !bFirstBlock;
}
else
{
// calculate the number of samples remaining until we ready for a block of audio,
// and wait that amount of time it will take to record.
int remaining = bFirstBlock ? (midPoint - writePos) : (recording.samples - writePos);
float timeRemaining = (float)remaining / (float)recordingHZ;
yield return new WaitForSeconds(timeRemaining);
}
}
yield break;
}
private void OnSpeechRecognize(SpeechRecognitionEvent result, Dictionary<string, object> customData)
{
if (result != null && result.results.Length > 0)
{
foreach (var res in result.results)
{
foreach (var alt in res.alternatives)
{
string text = string.Format("{0} ({1}, {2:0.00})\n", alt.transcript, res.final ? "Final" : "Interim", alt.confidence);
if (speechToTextField != null)
{
speechToTextField.text = text;
}
if (res.final)
{
if (characterState == SocialState.listening)
{
Debug.Log("WATSON | Speech to text recorded: \n" + alt.transcript);
StartCoroutine(Message(alt.transcript));
}
}
else
{
if (characterState == SocialState.idle)
{
characterState = SocialState.listening;
}
}
}
}
}
}
// text to speech
private IEnumerator Synthesize(string text)
{
Debug.Log("WATSON CALL | Synthesize input: \n" + text);
textToSpeech.Voice = voiceType;
bool doSynthesize = textToSpeech.ToSpeech(HandleSynthesizeCallback, OnFail, text, true);
if (doSynthesize)
{
StartCoroutine(Analyze(text));
saying = text;
characterState = SocialState.talking;
}
yield return null;
}
void HandleSynthesizeCallback(AudioClip clip, Dictionary<string, object> customData = null)
{
if (Application.isPlaying && clip != null)
{
voiceSource.clip = clip;
voiceSource.Play();
}
}
// conversation
private IEnumerator Message(string text)
{
Debug.Log("WATSON | Conversation input: \n" + text);
MessageRequest messageRequest = new MessageRequest()
{
input = new Dictionary<string, object>()
{
{ "text", text }
},
context = conversationContext
};
bool doMessage = conversation.Message(HandleMessageCallback, OnFail, workspaceId, messageRequest);
if (doMessage)
{
characterState = SocialState.thinking;
if (conversationInputField != null)
{
conversationInputField.text = text;
}
}
yield return null;
}
void HandleMessageCallback(object resp, Dictionary<string, object> customData)
{
object _tempContext = null;
(resp as Dictionary<string, object>).TryGetValue("context", out _tempContext);
if (_tempContext != null)
conversationContext = _tempContext as Dictionary<string, object>;
string contextList = conversationContext.ToString();
Dictionary<string, object> dict = Json.Deserialize(customData["json"].ToString()) as Dictionary<string, object>;
Dictionary<string, object> output = dict["output"] as Dictionary<string, object>;
Debug.Log("JSON INFO: " + customData["json"].ToString());
// Send new/update context variables to the Watson Conversation Service
if (weather.temperatureCity != null && !conversationContext.ContainsKey("temperature"))
{
string currentTemperature = weather.temperatureNumber.ToString();
conversationContext.Add("temperature", currentTemperature);
}
else if (conversationContext.ContainsKey("temperature"))
{
string currentTemperature = weather.temperatureNumber.ToString();
conversationContext.Remove("temperature");
conversationContext.Add("temperature", currentTemperature);
//Debug.Log("Current Temperature: " + currentTemperature);
}
// $ call context variables
var context = dict["context"] as Dictionary<string, object>;
if (context["destination_city"] != null)
{
destinationCity = context["destination_city"].ToString();
Debug.Log("Destination city: " + destinationCity);
}
if (context["departure_city"] != null)
{
departureCity = context["departure_city"].ToString();
}
List<object> text = output["text"] as List<object>;
string answer = text[0].ToString(); //Geeft alleen de eerste response terug
Debug.Log("WATSON | Conversation output: \n" + answer);
if (conversationOutputField != null)
{
conversationOutputField.text = answer;
}
fsData fsdata = null;
fsResult r = _serializer.TrySerialize(resp.GetType(), resp, out fsdata);
if (!r.Succeeded)
{
throw new WatsonException(r.FormattedMessages);
}
//convert fsdata to MessageResponse
MessageResponse messageResponse = new MessageResponse();
object obj = messageResponse;
r = _serializer.TryDeserialize(fsdata, obj.GetType(), ref obj);
if (!r.Succeeded)
{
throw new WatsonException(r.FormattedMessages);
}
if (resp != null)
{
//Recognize intents & entities
if (messageResponse.intents.Length > 0 && messageResponse.entities.Length > 0)
{
string intent = messageResponse.intents[0].intent;
string entity = messageResponse.entities[0].entity;
string literalEntity = messageResponse.entities[0].value;
if (entity == "city")
{
literalEntityCity = literalEntity;
}
if (intent == "weather" && entity == "city")
{
literalEntityCity = literalEntity;
}
}
if (messageResponse.intents.Length > 0)
{
string intent = messageResponse.intents[0].intent;
//Debug.Log("Intent: " + intent); //intent name
}
if (messageResponse.entities.Length > 0)
{
string entity = messageResponse.entities[0].entity;
//Debug.Log("Entity: " + entity); //entity name
string literalEntity = messageResponse.entities[0].value;
//Debug.Log("Entity Literal: " + literalEntity); //literal spoken entity
if (entity == "city")
{
literalEntityCity = literalEntity;
}
}
}
StartCoroutine(Synthesize(answer));
}
}
答案 0 :(得分:2)
你被问到的问题相当复杂。我相信如果你训练一个模型,它应该使用Watson的工具而且与Unity无关。
但是,你在Unity中可以做的是纠正返回词。也就是说,如果您希望获得城市的名称,您可以下载所有城市的列表,比如说有超过100,000居民(您可以在互联网上找到这个),然后检查返回的单词是否在这个清单。例如:
http://download.geonames.org/export/dump/
如果不是,您可以认为Watson检测不到,所以您可以使用Levenshtein距离来纠正您返回的单词。查看this
这个算法基本上试图找出两个单词的不同之处。可以使用其他算法来检查给定单词,这与列表中的单词最相似。您可以从here或其他one
获得一些想法