pandas to_excel()忽略/允许重复的列名

时间:2018-05-15 15:14:24

标签: python excel pandas

使用pandas的to_excel()函数后,有没有办法忽略重复的列名?

说,我有 old_wb.xlsx

>> df1 = pd.read_excel('wb1.xlsx')
        ---------------------merged header--------------------
        col1    col2   col3   col1   col4   col1   col2   col5
        test    test   test   test   test   test   test   test

并说我对我的Excel文件进​​行了一些处理,例如,删除合并的标题并将其保存到另一个Excel文件中:

>> df1.to_excel('new_wb.xlsx', 'Sheet1', merged_cells=False, header=None, index=False)

new_wb.xlsx 的列名如下所示:

        col1    col2   col3   col1.1   col4   col1.2   col2.1   col5
        test    test   test   test     test   test     test     test

它将.1添加到重复的列名称中,并且随着重复的列名称的增加它也会递增。

我尝试在使用to_excel()之前重命名列名,但它没有用。似乎重复的重命名发生在to_excel()

>> df1.rename(columns=lambda x: x.replace('.1',''))

在搜索时,我发现to_excel()的{​​{1}}的论点是mangle_dupe_cols=False,不幸的是它返回了:

ValueError: Setting mangle_dupe_cols=False is not supported yet

有关如何在保存`to_excel()'

时忽略重复列名的任何帮助

2 个答案:

答案 0 :(得分:3)

可以使用:

df1.rename(columns={'old_name':'new_name'})

虽然我看起来不太好,因为我有10列要重命名。

答案 1 :(得分:2)

  

@Ricky Aguilar 有一个很好的解决方案。我接受了他的解决方案,并使其变得更加动态

现在,您可以重命名所有重复的标题,甚至不知道它们的值是什么

def dataframe_allowing_duplicate_headers():
    # To Hold All The Possible Duplicate Tags ['.1', '.2', '.3', ...]
    dup_id_range = []

    # Load Your Excel File Using Pandas
    dataframe = pandas.read_excel("path_to_excel_file", sheet_name="sheetname")

    # Generate And Store All The Possible Duplicate Tags ['.1', '.2', '.3', ...]
    for count in range(0, len(dataframe.columns)):
        dup_id_range.append( '.{}'.format(count) )

    # Search And Replace All Duplicate Headers To What It Was Set As Originally
    def rename(dataframe, character_number):
        duplicate_columns_chars = list(
            filter(lambda v: v[(len(v)-character_number):] in dup_id_range,
            dataframe.columns))

        for duplicate_column in duplicate_columns_chars:
            dataframe = dataframe.rename(
                columns={duplicate_column:duplicate_column[:-character_number]})
        return dataframe


    # Replace The Possible Duplicates Respectfully Based On Columns Count
    if len(dup_id_range) > 0:
        dataframe = rename(dataframe, 2)
        if len(dup_id_range) > 9:
            dataframe = rename(dataframe, 3)
            if len(dup_id_range) > 99:
                dataframe = rename(dataframe, 4)
                # If You Have More Than A Thousand Columns (lol)
                #if len(dup_id_range) > 999:
                #    dataframe = rename(dataframe, 5)

    return dataframe

用法:

# This Dataframe Will Have All Your Headers, Allowing Your Duplicates
my_dataframe = dataframe_allowing_duplicate_headers()