我有txt
这样的文件格式:
[{
"lng": "111.68389897298637",
"odometer": 0,
"busSpeed": "0.00",
"relativeLocation": 0,
"realTimeStatus": "0",
"driverUuid": "28b3ea130a6ad049a10b041037e2550d80f5",
"posUuid": "8eba1ae2fd014eaf948b",
"cursorOverGround": "0",
"posIsInStation": "",
"sationName": "",
"distanceToPrePosition": 0,
"lineUuid": "c2e0313000fba04c940a4be0f9edb9c521c8",
"drvIcCard": "3168310624",
"lineType": "0",
"isOffset": "1",
"driverName": "贾爱俊",
"gatherTime": 1506468898000,
"allAlarms": "7",
"busUuid": "9d9648ff0375a04702080cc03a4c20377ea8",
"lat": "40.86856137377131",
"devUuid": "3d16fedb858842199cb3",
"sationUuid": ""
}, {
"lng": "111.68364330061954",
"odometer": 0,
"busSpeed": "11.00",
"relativeLocation": 0,
"realTimeStatus": "0",
"driverUuid": "28b3ea130a6ad049a10b041037e2550d80f5",
"posUuid": "ff42c6cca2e14583b84f",
"cursorOverGround": "280",
"posIsInStation": "",
"sationName": "",
"distanceToPrePosition": 0,
"lineUuid": "c2e0313000fba04c940a4be0f9edb9c521c8",
"drvIcCard": "3168310624",
"lineType": "0",
"isOffset": "1",
"driverName": "贾爱俊",
"gatherTime": 1506468919000,
"allAlarms": "7",
"busUuid": "9d9648ff0375a04702080cc03a4c20377ea8",
"lat": "40.868510932496115",
"devUuid": "3d16fedb858842199cb3",
"sationUuid": ""
}]
当我想将其导入数据框时,我只得到一列:
但是当我选择txt
的某些列表时,我可以得到正确答案:
有谁可以告诉我如何使用txt
文件正确执行此操作?任何帮助赞赏!感谢。
答案 0 :(得分:0)
无法撰写评论,因此必须写一个答案。
首先查看以下链接:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_table.html https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
您很可能必须检查分隔符/ sep和标头参数,以便正确地将文件解析为pandas DataFrame。
请提供最少的代码示例,说明您目前为止所尝试的内容或代码导致您的问题。
只需将上面的示例与python中的列表一起使用就可以了:
import pandas as pd
file = [{
... "lng": "111.68389897298637",
... "odometer": 0,
... "busSpeed": "0.00",
... "relativeLocation": 0,
... "realTimeStatus": "0",
... "driverUuid": "28b3ea130a6ad049a10b041037e2550d80f5",
... "posUuid": "8eba1ae2fd014eaf948b",
... "cursorOverGround": "0",
... "posIsInStation": "",
... "sationName": "",
... "distanceToPrePosition": 0,
... "lineUuid": "c2e0313000fba04c940a4be0f9edb9c521c8",
... "drvIcCard": "3168310624",
... "lineType": "0",
... "isOffset": "1",
... "driverName": "???",
... "gatherTime": 1506468898000,
... "allAlarms": "7",
... "busUuid": "9d9648ff0375a04702080cc03a4c20377ea8",
... "lat": "40.86856137377131",
... "devUuid": "3d16fedb858842199cb3",
... "sationUuid": ""
... }, {
... "lng": "111.68364330061954",
... "odometer": 0,
... "busSpeed": "11.00",
... "relativeLocation": 0,
... "realTimeStatus": "0",
... "driverUuid": "28b3ea130a6ad049a10b041037e2550d80f5",
... "posUuid": "ff42c6cca2e14583b84f",
... "cursorOverGround": "280",
... "posIsInStation": "",
... "sationName": "",
... "distanceToPrePosition": 0,
... "lineUuid": "c2e0313000fba04c940a4be0f9edb9c521c8",
... "drvIcCard": "3168310624",
... "lineType": "0",
... "isOffset": "1",
... "driverName": "???",
... "gatherTime": 1506468919000,
... "allAlarms": "7",
... "busUuid": "9d9648ff0375a04702080cc03a4c20377ea8",
... "lat": "40.868510932496115",
... "devUuid": "3d16fedb858842199cb3",
... "sationUuid": ""
... }]
df = pd.DataFrame(file)
df
allAlarms busSpeed busUuid cursorOverGround \
0 7 0.00 9d9648ff0375a04702080cc03a4c20377ea8 0
1 7 11.00 9d9648ff0375a04702080cc03a4c20377ea8 280
devUuid distanceToPrePosition driverName \
0 3d16fedb858842199cb3 0 ???
1 3d16fedb858842199cb3 0 ???
driverUuid drvIcCard gatherTime \
0 28b3ea130a6ad049a10b041037e2550d80f5 3168310624 1506468898000
1 28b3ea130a6ad049a10b041037e2550d80f5 3168310624 1506468919000
... lineType lineUuid \
0 ... 0 c2e0313000fba04c940a4be0f9edb9c521c8
1 ... 0 c2e0313000fba04c940a4be0f9edb9c521c8
lng odometer posIsInStation posUuid \
0 111.68389897298637 0 8eba1ae2fd014eaf948b
1 111.68364330061954 0 ff42c6cca2e14583b84f
realTimeStatus relativeLocation sationName sationUuid
0 0 0
1 0 0
[2 rows x 22 columns]
答案 1 :(得分:0)
您需要pandas.read_json
。完整的例子如下。
<强>设置强>
interceptUrlMap: [
{pattern: '/', access: ['permitAll']},
{pattern: '/error', access: ['permitAll']},
{pattern: '/index', access: ['permitAll']},
{pattern: '/index.gsp', access: ['permitAll']},
{pattern: '/shutdown', access: ['permitAll']},
{pattern: '/assets/**', access: ['permitAll']},
{pattern: '/**/js/**', access: ['permitAll']},
{pattern: '/**/css/**', access: ['permitAll']},
{pattern: '/**/images/**', access: ['permitAll']},
{pattern: '/**/favicon.ico', access: ['permitAll']},
{pattern: '/login/**', access: ['permitAll']},
{pattern: '/logout/**', access: ['permitAll']}
]
<强>解决方案强>
jQuery.sap.require("sap.ndc.BarcodeScanner");
sap.ndc.BarcodeScanner.scan(
function (oResult) { / * process scan result * / },
function (oError) { / * handle scan error * / },
function (oResult) { / * handle input dialog change * / }
);
结果
import pandas as pd
from io import StringIO
mystr = StringIO("""[{
"lng": "111.68389897298637",
"odometer": 0,
"busSpeed": "0.00",
"relativeLocation": 0,
"realTimeStatus": "0",
"driverUuid": "28b3ea130a6ad049a10b041037e2550d80f5",
"posUuid": "8eba1ae2fd014eaf948b",
"cursorOverGround": "0",
"posIsInStation": "",
"sationName": "",
"distanceToPrePosition": 0,
"lineUuid": "c2e0313000fba04c940a4be0f9edb9c521c8",
"drvIcCard": "3168310624",
"lineType": "0",
"isOffset": "1",
"driverName": "贾爱俊",
"gatherTime": 1506468898000,
"allAlarms": "7",
"busUuid": "9d9648ff0375a04702080cc03a4c20377ea8",
"lat": "40.86856137377131",
"devUuid": "3d16fedb858842199cb3",
"sationUuid": ""
}, {
"lng": "111.68364330061954",
"odometer": 0,
"busSpeed": "11.00",
"relativeLocation": 0,
"realTimeStatus": "0",
"driverUuid": "28b3ea130a6ad049a10b041037e2550d80f5",
"posUuid": "ff42c6cca2e14583b84f",
"cursorOverGround": "280",
"posIsInStation": "",
"sationName": "",
"distanceToPrePosition": 0,
"lineUuid": "c2e0313000fba04c940a4be0f9edb9c521c8",
"drvIcCard": "3168310624",
"lineType": "0",
"isOffset": "1",
"driverName": "贾爱俊",
"gatherTime": 1506468919000,
"allAlarms": "7",
"busUuid": "9d9648ff0375a04702080cc03a4c20377ea8",
"lat": "40.868510932496115",
"devUuid": "3d16fedb858842199cb3",
"sationUuid": ""
}]""")