我坚持使用子类方法制作模型。问题是在这个子类方法中,我们的输入形状方法在哪里,我们的编译步骤在哪里?
请帮我完成作业。
managedObject.localDate = stringDate
这是the link
答案 0 :(得分:0)
我希望摘自https://www.tensorflow.org/guide/keras的这段代码能对您有所帮助:
class MyModel(keras.Model):
def __init__(self, num_classes=10):
super(MyModel, self).__init__(name='my_model')
self.num_classes = num_classes
# Define your layers here.
self.dense_1 = keras.layers.Dense(32, activation='relu')
self.dense_2 = keras.layers.Dense(num_classes, activation='sigmoid')
def call(self, inputs):
# Define your forward pass here,
# using layers you previously defined (in `__init__`).
x = self.dense_1(inputs)
return self.dense_2(x)
def compute_output_shape(self, input_shape):
# You need to override this function if you want to use the subclassed model
# as part of a functional-style model.
# Otherwise, this method is optional.
shape = tf.TensorShape(input_shape).as_list()
shape[-1] = self.num_classes
return tf.TensorShape(shape)
# Instantiates the subclassed model.
model = MyModel(num_classes=10)
# The compile step specifies the training configuration.
model.compile(optimizer=tf.train.RMSPropOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# Trains for 5 epochs.
model.fit(data, labels, batch_size=32, epochs=5)
您可以看到“ model.compile”调用,在拟合阶段,您将把输入数据传递给模型。数据在模型内部的流动方式是在call方法中定义的,因此,如果要进行一些输入大小验证,也可以将其放置在那里。
Seba