我使用共聚焦显微镜生成的3D体积。这些图像的x,y,z尺寸约为1024,1024,50,并存储在.tif文件中。
我想将OpenCV-python cv2.adaptiveThreshold
应用于整个图像堆栈。以下代码适用于2D图像(1024,1024,1)。如何为整个卷扩展它并保存输出.tif文件?
img = cv2.imread("1024x1024x40.tif")
gimg = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
th = cv2.adaptiveThreshold(gimg, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 7, -20)
cv2.imshow('original',img)
cv2.imshow('Adaptive threshold',th)
cv2.waitKey(0)
cv2.destroyAllWindows()
谢谢!
答案 0 :(得分:0)
我没有测试数据,但使用this answer作为指南,您可能会尝试以下内容:
import javabridge
import bioformats
javabridge.start_vm(class_path=bioformats.JARS)
path_to_data = '/path/to/data/file_name.tif'
xml_string = bioformats.get_omexml_metadata(path_to_data)
ome = bioformats.OMEXML(xml_string) # be sure everything is ascii
iome = ome.image(0) # e.g. first image
reader = bioformats.ImageReader(path_to_data)
raw_data = []
for z in range(iome.Pixels.get_SizeZ()):
img = reader.read(z=z, series=0, rescale=False)
gimg = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
th = cv2.adaptiveThreshold(gimg, 255,
cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 7, -20)
img = cv2.bitwise_and(img, img, mask = th)
raw_data.append(img)
bioformats.write_image("/path/to/data/file_name_OUTPUT.tif", raw_data)