更新:现在我工作后检查视频正在加载,但现在我有以下内容。
File "real_time_object_detection.py", line 69, in <module>
inpWidth = args.width if args.width else frameWidth
AttributeError: 'dict' object has no attribute 'width'
我是机器学习领域的新手,特别是 OpenCV ,
我从PyImagesearch
获得了一个代码,它是关于使用网络摄像头的实时对象检测,我想更改代码以处理视频文件作为输入,我带来了改变,我认为它会有所帮助,但现在我有了以下错误:
错误
Traceback (most recent call last):
File "real_time_object_detection.py", line 54, in <module>
frame = imutils.resize(frame, width=450)
File "/usr/local/lib/python2.7/dist-packages/imutils/convenience.py", line 69, in resize
(h, w) = image.shape[:2]
AttributeError: 'cv2.VideoCapture' object has no attribute 'shape'
这是通过命令行运行
$ python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel --video ped.mp4
这是整个代码
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
ap.add_argument("-v", "--video", required=True,
help="path to input video file")
args = vars(ap.parse_args())
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
print("[INFO] starting video stream...")
vs = cv2.VideoCapture(args["video"])
time.sleep(2.0)
fps = FPS().start()
while True:
frame = cv2.VideoCapture(args["video"])
frame = imutils.resize(frame, width=450)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
inpWidth = args.width if args.width else frameWidth
inpHeight = args.height if args.height else frameHeight
blob = cv2.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
net.setInput(blob)
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
frame = cv2.resize(frame, (inpWidth, inpHeight))
net.setInput(np.array([inpHeight, inpWidth, 1.6], dtype=np.float32), 'im_info');
outs = net.forward(getOutputsNames(net))
for i in np.arange(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > args["confidence"]:
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
fps.update()
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
cv2.destroyAllWindows()
vs.stop()