我需要对Spark中使用ML的MinMaxScaler
方法规范化的数据进行去规范化。
我可以按照以下步骤规范化我的数据:Spark: convert an RDD[LabeledPoint] to a Dataframe to apply MinMaxScaler, and after scaling get the normalized RDD[LabeledPoint]我之前发布过。
例如,原始df
有两个第一列,并且在缩放后,结果为:
+------+--------------------+--------------------+
|labels| features| featuresScaled|
+------+--------------------+--------------------+
| 1.0|[6.0,7.0,42.0,1.1...|[1.0,0.2142857142...|
| 1.0|[6.0,18.0,108.0,3...|[1.0,1.0,1.0,1.0,...|
| 1.0|[5.0,7.0,35.0,1.4...|[0.0,0.2142857142...|
| 1.0|[5.0,8.0,40.0,1.6...|[0.0,0.2857142857...|
| 1.0|[6.0,4.0,24.0,0.6...|[1.0,0.0,0.0,0.0,...|
+------+--------------------+--------------------+
问题是,现在我需要做相反的过程:去标准化。
为此,我需要min
向量中每个要素列的max
和features
值,以及要非规范化的值。
要获得min
和max
,我要求MinMaxScaler
如下:
val df_fitted = scaler.fit(df_all)
val df_fitted_original_min = df_fited.originalMin // Vector
val df_fitted_original_max = df_fited.originalMax // Vector
df_fited_original_min[1.0,1.0,7.0,0.007,0.052,0.062,1.0,1.0,7.0,1.0]
df_fited_original_max[804.0,553.0,143993.0,537.0,1.0,1.0,4955.0,28093.0,42821.0,3212.0]
另一方面,我有这样的DataFrame:
+--------------------+-----+--------------------+--------------------+-----+-----+--------------------+--------------------+--------------------+-----+
| col_0|col_1| col_2| col_3|col_4|col_5| col_6| col_7| col_8|col_9|
+--------------------+-----+--------------------+--------------------+-----+-----+--------------------+--------------------+--------------------+-----+
|0.009069428120139292| 0.0|9.015488712438252E-6|2.150418860440459E-4| 1.0| 1.0|0.001470074844665...|2.205824685144127...|2.780971210319238...| 0.0|
|0.008070826019024355| 0.0|3.379696051366339...|2.389342641479033...| 1.0| 1.0|0.001308210192425627|1.962949264985630...|1.042521123176856...| 0.0|
|0.009774715414895803| 0.0|1.299590589291292...|1.981673063697640...| 1.0| 1.0|0.001584395736407...|2.377361424206848...| 4.00879434193585E-5| 0.0|
|0.009631155146285946| 0.0|1.218569739510422...|2.016021040879828E-4| 1.0| 1.0|0.001561125874539...|2.342445354515269...|3.758872615157643E-5| 0.0|
现在,我需要应用以下等式来获取新值,但我不知道如何制作它。
X_original = ( X_scaled * (max - min) ) + min
对于DF中的每个位置,我必须将此等式与相应的max
和min
值应用到向量中。
例如:DF的第一行和第一列是0.009069428120139292
。在同一列中,相应的min
和max
值为:1.0
和804.0
。
因此,非规范化值为:
X_den = ( 0.009069428120139292 * (804.0 - 1.0) ) + 1.0
有必要澄清在程序期间首先归一化的DF被修改。由于我需要应用去规范化(如果不是,最简单的方法是保留原始DF的副本)。
答案 0 :(得分:0)
我从下面的https://stackoverflow.com/a/50314767/9759150得到了答案,再加上我的问题,我已经完成了非规范化过程。
让我们将normalized_df
视为包含10列的数据框(在我的问题中显示):
import org.apache.spark.sql.Column
import org.apache.spark.sql.functions._
val updateFunction = (columnValue: Column, minValue: Int, maxValue: Int) =>
(columnValue * ( lit(maxValue) - lit(minValue))) + lit(minValue)
val updateColumns = (df: DataFrame, minVector: Vector, maxVector: Vector, updateFunction: (Column, Int, Int) => Column) => {
val columns = df.columns
minVector.toArray.zipWithIndex.map{
case (updateValue, index) =>
updateFunction( col(columns(index.toInt)), minVector(index).toInt, maxVector(index).toInt ).as(columns(index.toInt))
}
}
var dfUpdated = normalized_df.select(
updateColumns(normalized_df, df_fitted_original_min, df_fitted_original_max, updateFunction) :_*
)