我编写了一个代码来进行不同范围的矩阵乘法,但是执行代码需要花费很多时间,
代码:
import time
print("Enter the size of matrix A")
m = int(input())
n = int(input())
print("Enter the size of matrix A")
p = int(input())
q = int(input())
if(n==p):
print('enter matrix A')
else:
print("invalid entry")
exit()
our_list1 = []
A = []
i = 0
int(i)
for i in range(m):
for i in range(n):
number = int(input('Please enter a element '))
our_list1.append(number)
A.append(our_list1)
our_list1= []
print(A)
print('enter matrix B')
our_list1 = []
B = []
for i in range(p):
for i in range(q):
number = int(input('Please enter a element '))
our_list1.append(number)
B.append(our_list1)
our_list1= []
print(B)
start_time = time.time()
#
our_list1 = []
R = []
for i in range(m):
for i in range(q):
number = 0
our_list1.append(number)
R.append(our_list1)
our_list1= []
print(R)
for i in range(len(A)):
# iterating by coloum by B
for j in range(len(B[0])):
# iterating by rows of B
for k in range(len(B)):
R[i][j] += A[i][k] * B[k][j]
print(R)
print("--- %s seconds ---" % (time.time() - start_time))
执行这种矩阵乘法方法需要更多时间,如何选择大尺寸范围矩阵乘法的有效方法?因此,更高维度的阵列可以平稳快速地执行。 样本输出:
Matrix A[[3, 3, 3], [3, 3, 3], [3, 3, 3]]
Matrix B[[3, 3, 3], [3, 3, 3], [3, 3, 3]]
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
[[27, 27, 27], [27, 27, 27], [27, 27, 27]]
--- 0.00014400482177734375 seconds ---
我需要0.00014400482177734375秒我可以在更高维度乘法时改进这个时间吗?
答案 0 :(得分:3)
评论中的这个时间安排有一些明显的缺点:
print()
比较贵,与计算无关。将它包括在时间中可占据整个时间的很大一部分。time.time()
)不是获得稳定时间的好方法;你得到一次运行,你的系统上可能发生任何事情。这应该为比较提供更好的测试用例:
import numpy as np
def python_lists():
A = [[3, 3, 3], [3, 3, 3], [3, 3, 3]]
B = [[3, 3, 3], [3, 3, 3], [3, 3, 3]]
our_list1 = []
R = []
for i in range(3):
for i in range(3):
number = 0
our_list1.append(number)
R.append(our_list1)
our_list1= []
for i in range(len(A)):
# iterating by coloum by B
for j in range(len(B[0])):
# iterating by rows of B
for k in range(len(B)):
R[i][j] += A[i][k] * B[k][j]
def numpy_array():
A = np.full((3, 3), 3)
B = np.full((3, 3), 3)
result = np.dot(A, B)
时间安排:
%timeit python_lists()
15 µs ± 45.6 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit numpy_array()
5.57 µs ± 44.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
因此,对于这个例子,NumPy快了约3倍。但是如果你有更大的阵列,这将更加重要。
编辑:
实际上,您可能会认为在函数内部创建A
和B
对于实际矩阵乘法的计时没有帮助,所以如果我先创建列表/数组并传递它们,那么新的计时是:
%timeit python_lists(A, B)
14.4 µs ± 98.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit numpy_array(A, B)
1.2 µs ± 13.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
并且,为了完整起见,对于具有形状(200,200)的数组:
%timeit python_lists()
6.99 s ± 128 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit numpy_array()
5.77 ms ± 43.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)