我正在尝试从 hive 表中获取application_number
条记录并收集列表。从这个列表中,我正在迭代列表,并为每一个 application_number 我试图调用curl命令。
以下是我的示例代码:
object th extends Serializable
{
def main(args: Array[String]): Unit =
{
val conf = new SparkConf().setAppName("th").setMaster("local")
conf.set("spark.debug.maxToStringFields", "10000000")
val context = new SparkContext(conf)
val sqlCotext = new SQLContext(context)
val hiveContext = new HiveContext(context)
import hiveContext.implicits._
val list = hiveContext.sql("select application_number from tableA").collect().take(100)
val l1=context.parallelize(list)
val stu1 =StructType(
StructField("application_number", LongType, true) ::
StructField("event_code", StringType, true) ::
StructField("event_description", StringType, true) ::
StructField("event_recorded_date", StringType, true) :: Nil)
var initialDF1 = sqlCotext.createDataFrame(context.emptyRDD[Row], stu1)
l1.repartition(10).foreachPartition(f=>{f.foreach(f=>
{
val schema=StructType(List(
StructField("queryResults",StructType(
List(StructField("searchResponse",StructType(
List(StructField("response",StructType(
List(StructField("docs",ArrayType(StructType(
List(
StructField("transactions",ArrayType(StructType(
List
(
StructField("code", StringType, nullable = true),
StructField("description", StringType, nullable = true),
StructField("recordDate", StringType, nullable = true)
)
)))
)
))))
)))
)))
))
))
val z = f.toString().replace("[","").replace("]","").replace(" ","").replace("(","").replace(")","")
if(z!= null)
{
val cmd = Seq("curl", "-X", "POST", "--insecure", "--header", "Content-Type: application/json", "--header", "Accept: application/json", "-d", "{\"searchText\":\""+z+"\",\"qf\":\"applId\"}", "https://ped.uspto.gov/api/queries") //cmd.!
val r = cmd.!!
val r1 = r.toString()
val rdd = context.parallelize(Seq(r1))
val dff = sqlCotext.read.schema(schema).json(rdd.toDS)
val dfContent = dff.select(explode(dff("queryResults.searchResponse.response.docs.transactions"))).toDF("transaction")
val a1 = dfContent.select("transaction.code").collect()
val a2 = dfContent.select("transaction.description").collect()
val a3 = dfContent.select("transaction.recordDate").collect()
for (mmm1 <- a1; mm2 <- a2; mm3 <- a3)
{
val ress1 = mmm1.toString().replace("[", " ").replace("]", " ").replace("WrappedArray(","").replace(")","")
val res2 = mm2.toString().replace("[", " ").replace("]", " ").replace("WrappedArray(","").replace(")","")
val res3 = mm3.toString().replace("[", " ").replace("]", " ").replace("WrappedArray(","").replace(")","")
initialDF1 = initialDF1.union(Seq((z, ress1, res2, res3)).toDF("application_number", "event_code", "event_description", "event_recorded_date"))
}
}
})})
initialDF1.registerTempTable("curlTH")
hiveContext.sql("insert into table default.ipg_tableB select application_number,event_code,event_description,event_recorded_date from curlTH")
}
}
我得到的任务不是可序列化的例外。
这是我的错误跟踪:
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2094)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:924)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:923)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:923)
at newipg170103.th$.main(th.scala:58)
at newipg170103.th.main(th.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:738)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.NotSerializableException: org.apache.spark.SparkContext
Serialization stack:
- object not serializable (class: org.apache.spark.SparkContext, value: org.apache.spark.SparkContext@1e592ef2)
- field (class: newipg170103.th$$anonfun$main$1, name: context$1, type: class org.apache.spark.SparkContext)
- object (class newipg170103.th$$anonfun$main$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:295)
... 20 more
答案 0 :(得分:1)
在Apache Spark中,不允许在操作或转换中使用SQLContext
,SparkContext
或SparkSession
(map
,foreach
,{{1} },mapPartitions
等等。
因此
foreachPartition
无效的Spark代码。