所以我试图了解tensorflow中的分布式训练。为了练习自己,我正在尝试https://github.com/hn826/distributed-tensorflow/blob/master/distributed-deep-mnist.py
中的代码class Book: NSObject, NSCoding {
var title: String
var author: String
var pageCount: Int
var categories: [String]
var available: Bool
// Memberwise initializer
init(title: String, author: String, pageCount: Int, categories: [String], available: Bool) {
self.title = title
self.author = author
self.pageCount = pageCount
self.categories = categories
self.available = available
}
// MARK: NSCoding
required convenience init?(coder decoder: NSCoder) {
guard let title = decoder.decodeObjectForKey("title") as? String,
let author = decoder.decodeObjectForKey("author") as? String,
let categories = decoder.decodeObjectForKey("categories") as? [String]
else { return nil }
self.init(
title: title,
author: author,
pageCount: decoder.decodeIntegerForKey("pageCount"),
categories: categories,
available: decoder.decodeBoolForKey("available")
)
}
func encodeWithCoder(coder: NSCoder) {
coder.encodeObject(self.title, forKey: "title")
coder.encodeObject(self.author, forKey: "author")
coder.encodeInt(Int32(self.pageCount), forKey: "pageCount")
coder.encodeObject(self.categories, forKey: "categories")
coder.encodeBool(self.available, forKey: "available")
}
除了一些概念,我已经理解了大部分的事情
首先,关于import argparse
import sys
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None
def deepnn(x):
x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
return y_conv, keep_prob
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# Create and start a server for the local task.
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# Assigns ops to the local worker by default.
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# Build Deep MNIST model...
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
y_conv, keep_prob = deepnn(x)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
global_step = tf.contrib.framework.get_or_create_global_step()
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy, global_step=global_step)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# The StopAtStepHook handles stopping after running given steps.
hooks=[tf.train.StopAtStepHook(last_step=1000)]
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir=FLAGS.log_dir,
hooks=hooks) as mon_sess:
i = 0
while not mon_sess.should_stop():
# Run a training step asynchronously.
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = mon_sess.run(accuracy, feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print('global_step %s, task:%d_step %d, training accuracy %g'
% (tf.train.global_step(mon_sess, global_step), FLAGS.task_index, i, train_accuracy))
mon_sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
i = i + 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.register("type", "bool", lambda v: v.lower() == "true")
# Flags for defining the tf.train.ClusterSpec
parser.add_argument(
"--ps_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs"
)
parser.add_argument(
"--worker_hosts",
type=str,
default="",
help="Comma-separated list of hostname:port pairs"
)
parser.add_argument(
"--job_name",
type=str,
default="",
help="One of 'ps', 'worker'"
)
# Flags for defining the tf.train.Server
parser.add_argument(
"--task_index",
type=int,
default=0,
help="Index of task within the job"
)
# Flags for specifying input/output directories
parser.add_argument(
"--data_dir",
type=str,
default="/tmp/mnist_data",
help="Directory for storing input data")
parser.add_argument(
"--log_dir",
type=str,
default="/tmp/train_logs",
help="Directory for train logs")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
。据我所知,任务和工人都在其中定义。但我很困惑。
其次,关于解析器。它们是什么?为什么我们在这里使用它们?我已经意识到,在终端中运行代码时,FLAGS
可以为您提供选项。
我猜parser.add_argument()
和parser
是以某种方式连接的。所以知道他们做了什么,可能会把我头上的所有问号都赶走。
答案 0 :(得分:2)
首先,关于
FLAGS
。据我所知,任务和工人都在其中定义。但我很困惑。
是的,这是在分布式设置中运行tensorflow的标准方法(您的特定情况是图表间复制策略)。基本上,相同的脚本启动不同的节点(工作人员,参数服务器等),它们一起执行训练。 This tutorial讨论了张量流中的各种策略,并很好地解释了它如何转换为代码。
以下是如何使用此脚本的示例。启动4个进程(2 ps服务器和2个工作程序):
# On ps0.example.com:
$ python trainer.py \
--ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
--worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
--job_name=ps --task_index=0
# On ps1.example.com:
$ python trainer.py \
--ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
--worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
--job_name=ps --task_index=1
# On worker0.example.com:
$ python trainer.py \
--ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
--worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
--job_name=worker --task_index=0
# On worker1.example.com:
$ python trainer.py \
--ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
--worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
--job_name=worker --task_index=1
其次,关于解析器。它们是什么?为什么我们在这里使用它们?
处理命令行参数的python方法:argparse
。不同的选项允许指定每个参数的类型和边界(从而定义验证器),分配操作等等(查看文档中的可用功能)。然后,解析器获取命令行字符串,并通过一次调用神奇地设置变量:
FLAGS, unparsed = parser.parse_known_args()