tensorflow中的FLAGS和解析器分布式训练

时间:2018-05-10 06:58:15

标签: python parsing tensorflow distributed-computing argparse

所以我试图了解tensorflow中的分布式训练。为了练习自己,我正在尝试https://github.com/hn826/distributed-tensorflow/blob/master/distributed-deep-mnist.py

中的代码
class Book: NSObject, NSCoding {
var title: String
var author: String
var pageCount: Int
var categories: [String]
var available: Bool

// Memberwise initializer
init(title: String, author: String, pageCount: Int, categories: [String], available: Bool) {
    self.title = title
    self.author = author
    self.pageCount = pageCount
    self.categories = categories
    self.available = available
}

// MARK: NSCoding

required convenience init?(coder decoder: NSCoder) {
    guard let title = decoder.decodeObjectForKey("title") as? String,
        let author = decoder.decodeObjectForKey("author") as? String,
        let categories = decoder.decodeObjectForKey("categories") as? [String]
        else { return nil }

    self.init(
        title: title,
        author: author,
        pageCount: decoder.decodeIntegerForKey("pageCount"),
        categories: categories,
        available: decoder.decodeBoolForKey("available")
    )
}

func encodeWithCoder(coder: NSCoder) {
    coder.encodeObject(self.title, forKey: "title")
    coder.encodeObject(self.author, forKey: "author")
    coder.encodeInt(Int32(self.pageCount), forKey: "pageCount")
    coder.encodeObject(self.categories, forKey: "categories")
    coder.encodeBool(self.available, forKey: "available")
}

除了一些概念,我已经理解了大部分的事情 首先,关于import argparse import sys from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None def deepnn(x): x_image = tf.reshape(x, [-1, 28, 28, 1]) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 return y_conv, keep_prob def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def main(_): ps_hosts = FLAGS.ps_hosts.split(",") worker_hosts = FLAGS.worker_hosts.split(",") # Create a cluster from the parameter server and worker hosts. cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts}) # Create and start a server for the local task. server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) if FLAGS.job_name == "ps": server.join() elif FLAGS.job_name == "worker": # Assigns ops to the local worker by default. with tf.device(tf.train.replica_device_setter( worker_device="/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # Build Deep MNIST model... x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) y_conv, keep_prob = deepnn(x) cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) global_step = tf.contrib.framework.get_or_create_global_step() train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy, global_step=global_step) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # The StopAtStepHook handles stopping after running given steps. hooks=[tf.train.StopAtStepHook(last_step=1000)] # The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredTrainingSession(master=server.target, is_chief=(FLAGS.task_index == 0), checkpoint_dir=FLAGS.log_dir, hooks=hooks) as mon_sess: i = 0 while not mon_sess.should_stop(): # Run a training step asynchronously. batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = mon_sess.run(accuracy, feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('global_step %s, task:%d_step %d, training accuracy %g' % (tf.train.global_step(mon_sess, global_step), FLAGS.task_index, i, train_accuracy)) mon_sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) i = i + 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") # Flags for defining the tf.train.ClusterSpec parser.add_argument( "--ps_hosts", type=str, default="", help="Comma-separated list of hostname:port pairs" ) parser.add_argument( "--worker_hosts", type=str, default="", help="Comma-separated list of hostname:port pairs" ) parser.add_argument( "--job_name", type=str, default="", help="One of 'ps', 'worker'" ) # Flags for defining the tf.train.Server parser.add_argument( "--task_index", type=int, default=0, help="Index of task within the job" ) # Flags for specifying input/output directories parser.add_argument( "--data_dir", type=str, default="/tmp/mnist_data", help="Directory for storing input data") parser.add_argument( "--log_dir", type=str, default="/tmp/train_logs", help="Directory for train logs") FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) 。据我所知,任务和工人都在其中定义。但我很困惑。

其次,关于解析器。它们是什么?为什么我们在这里使用它们?我已经意识到,在终端中运行代码时,FLAGS可以为您提供选项。

我猜parser.add_argument()parser是以某种方式连接的。所以知道他们做了什么,可能会把我头上的所有问号都赶走。

1 个答案:

答案 0 :(得分:2)

  

首先,关于FLAGS。据我所知,任务和工人都在其中定义。但我很困惑。

是的,这是在分布式设置中运行tensorflow的标准方法(您的特定情况是图表间复制策略)。基本上,相同的脚本启动不同的节点(工作人员,参数服务器等),它们一起执行训练。 This tutorial讨论了张量流中的各种策略,并很好地解释了它如何转换为代码。

以下是如何使用此脚本的示例。启动4个进程(2 ps服务器和2个工作程序):

# On ps0.example.com:
$ python trainer.py \
     --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
     --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
     --job_name=ps --task_index=0
# On ps1.example.com:
$ python trainer.py \
     --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
     --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
     --job_name=ps --task_index=1
# On worker0.example.com:
$ python trainer.py \
     --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
     --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
     --job_name=worker --task_index=0
# On worker1.example.com:
$ python trainer.py \
     --ps_hosts=ps0.example.com:2222,ps1.example.com:2222 \
     --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 \
     --job_name=worker --task_index=1
  

其次,关于解析器。它们是什么?为什么我们在这里使用它们?

处理命令行参数的python方法:argparse。不同的选项允许指定每个参数的类型和边界(从而定义验证器),分配操作等等(查看文档中的可用功能)。然后,解析器获取命令行字符串,并通过一次调用神奇地设置变量:

FLAGS, unparsed = parser.parse_known_args()