numpy索引数组抛出超出范围的异常

时间:2018-05-09 05:08:26

标签: python numpy numpy-indexing

有人可以指出下面代码中的错误吗? 最后一行不断抛出错误:

tmp = img1[coords]
IndexError: index 409 is out of bounds for axis 0 with size 352

我只是将指数移动了10,所以我不明白我是如何在img1中突然出界的

img1 = np.random.randint(0,256, (352,870, 3), dtype=np.uint8)
img2 = np.random.randint(0,256, (44,853, 3), dtype=np.uint8)
coords = np.where(img2[:, :, 2] >= 250)
coords = np.transpose(np.transpose(coords)+(10, 10))
tmp = img1[coords]

2 个答案:

答案 0 :(得分:1)

不清楚你想要实现的目标,但我认为是这样的:tmp = img1[coords[0], coords[1]]

答案 1 :(得分:1)

In [1]: x = np.arange(24).reshape(2,3,4)
In [2]: idx = np.where(x%2)
In [3]: idx
Out[3]: 
(array([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], dtype=int32),
 array([0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2], dtype=int32),
 array([1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3], dtype=int32))
In [4]: x[idx]
Out[4]: array([ 1,  3,  5,  7,  9, 11, 13, 15, 17, 19, 21, 23])
In [5]: idx1 = np.transpose(np.transpose(idx))
In [6]: idx1
Out[6]: 
array([[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
       [0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2],
       [1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3]], dtype=int32)

使用idx1的错误方法:

In [7]: x[idx1]
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-7-ffe1818b2257> in <module>()
----> 1 x[idx1]

IndexError: index 2 is out of bounds for axis 0 with size 2

正确的方式:

In [8]: x[tuple(idx1)]
Out[8]: array([ 1,  3,  5,  7,  9, 11, 13, 15, 17, 19, 21, 23])

使用where xIn [22]: idx = np.where(x[:,:,2]%3) In [23]: idx Out[23]: (array([0, 0, 1, 1], dtype=int32), array([0, 2, 0, 2], dtype=int32)) In [24]: idx1 = np.transpose(np.transpose(idx)) In [25]: x[idx] Out[25]: array([[ 0, 1, 2, 3], [ 8, 9, 10, 11], [12, 13, 14, 15], [20, 21, 22, 23]]) In [26]: x[tuple(idx1)] Out[26]: array([[ 0, 1, 2, 3], [ 8, 9, 10, 11], [12, 13, 14, 15], [20, 21, 22, 23]]) 进行测试(我不喜欢假设代码有效):

Array
(
    [0] => stdClass Object
        (
            [chapter_name] => Algebra
            [chapter_id] => 1
            [module_id] => 12
        )

    [1] => stdClass Object
        (
            [chapter_name] => Combinatorics
            [chapter_id] => 2
            [module_id] => 12
        )

    [2] => stdClass Object
        (
            [chapter_name] => Mathematical physics
            [chapter_id] => 3
            [module_id] => 12
        )

    [3] => stdClass Object
        (
            [chapter_name] => Calculus and analysis
            [chapter_id] => 6
            [module_id] => 12
        )

)

使用n行数组进行索引与使用n元组数组进行索引不同。元组的元素应用于连续的维度。数组的元素仅应用于一个维度,即第一个维度。