我无法调试,运行此训练模型,然后保存权重。
代码:
#Part 1 - Building the CNN
#Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
#Initialising the CNN
classifier = Sequential()
#Step 1 - Convolution
#classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
classifier.add(Conv2D(32,3,3,input_shape = (64, 64, 3),activation = 'relu'))
#Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
#Adding a second convolutional layer
classifier.add(Conv2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
#Step 3 - Flattening
classifier.add(Flatten())
#Step 4 - Full connection
classifier.add(Dense(128, activation = 'relu'))
classifier.add(Dense(1, activation = 'sigmoid'))
#Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
#Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(training_set,
validation_data = test_set,
validation_steps = 2000,
steps_per_epoch = 8000,
epochs = 25)
classifier.save("weights.h5")
问题#1 :我收到以下错误:
Found 8005 images belonging to 2 classes.
Found 2023 images belonging to 2 classes.
-----------------------------------------------------------------------TypeError Traceback (most recent call last) in ()
58 validation_steps = 2000,
59 steps_per_epoch = 8000,
---> 60 epochs = 25)
61
62
TypeError: fit_generator() takes at least 4 arguments (3 given)
问题#2 :我想保存经过训练的砝码,以便我不需要一遍又一遍地运行它。
我单独运行了classifier.save("weights.h5")
,并使用以下消息创建了一个空文件(因为它无法训练)。如何保存模型权重?
Error! /Users/xx/xx/xx/cnn_050518/model_weights.h5 is not UTF-8 encoded Saving disabled. See Console for more details.
versions of tools used (by entering print tool.version) keras: 1.1.1 tensorflow: 0.11.orc2 python:2.7 Macbook version 10.13.2