如果它不是null,调用回调函数的Javascript简写?

时间:2018-05-08 14:42:58

标签: javascript node.js

如果我们有:

185

是否有更短的方法来检查cb是否为空并调用它?这将在Node上运行。

2 个答案:

答案 0 :(得分:4)

您可以直接查看import os import tarfile import pandas as pd import matplotlib.pyplot as plt import numpy as np from six.moves import urllib import tensorflow as tf from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split from sklearn.utils import shuffle HOME_PATH = os.getcwd() """ load the csv file with the lending data and convert to tensors """ def convert_duration(s): try: if pd.isnull(s): return s elif s[0] == '<': return 0.0 elif s[:2] == '10': return 10.0 else: return np.float(s[0]) except TypeError: return np.float64(s) def load_data(file_name): csv_path = os.path.join(HOME_PATH, file_name) csv_data = pd.read_csv(csv_path, encoding = "ISO-8859-1", dtype={'desc': np.str, 'verification_status_joint': np.str, 'loan_status': np.str},low_memory=False, na_values=[]) loans = csv_data.loc[csv_data['loan_status'].isin(['Fully Paid', 'Charged Off'])] # Sort out only fully Paid (Paid) and Charged Off (Default) loans['loan_status'] = loans['loan_status'].apply(lambda s: np.int(s == 'Fully Paid')) # Convert to boolean integer # Drop Columns with one distinct data field for col in loans.columns: if loans[col].nunique() == 1: del loans[col] for col in loans.columns: if (loans[col].notnull().sum() / len(loans.index)) < 0.1 : del loans[col] # Remove all irrelevant columns & hifg prediction columns based on pure descetion loans.drop(labels=['id', 'member_id', 'grade', 'sub_grade', 'last_credit_pull_d', 'emp_title', 'url', 'desc', 'title', 'issue_d', 'earliest_cr_line', 'last_pymnt_d','addr_state'], axis=1, inplace=True) # Process the text based variables # Term loans['term'] = loans['term'].apply(lambda s:np.float(s[1:3])) loans['emp_length'] = loans['emp_length'].apply(lambda s: convert_duration(s)) #change zip code to just the first 3 significant digits loans['zip_code'] = loans['zip_code'].apply(lambda s:np.float(s[:3])) loans.fillna('',inplace=True) loan_data = shuffle(loans) X = loan_data.drop(labels=['loan_status'], axis=1) Y = loan_data['loan_status'] ## consider processing tensorflow feature columns here and return as one response and standardise at one X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42) # scaler = StandardScaler() # X_train = scaler.fit_transform(X_train) # X_test = scaler.fit_transform(X_test) return (X_train, Y_train), (X_test, Y_test) def my_input_fn(features, labels, batch_size , shuffle=True): # consider changing categorical columns and all dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels)) dataset = dataset.shuffle(buffer_size=100000).repeat(count=None).batch(batch_size) return dataset.make_one_shot_iterator().get_next() def my_eval_fn(features, labels, batch_size , shuffle=True): # consider changing categorical columns and all dataset = tf.data.Dataset.from_tensor_slices((features,labels)) dataset = dataset.batch(batch_size) return dataset.make_one_shot_iterator().get_next() #Start on calls to make data available (X_train, Y_train), (X_test, Y_test) = load_data("loan_data.csv") print(dict(X_train)) my_feature_columns = [] numerical_columns = ['loan_amnt', 'funded_amnt', 'funded_amnt_inv', 'int_rate', 'installment', 'annual_inc', 'dti', 'delinq_2yrs', 'inq_last_6mths', 'mths_since_last_delinq', 'mths_since_last_record', 'open_acc', 'pub_rec', 'revol_bal', 'revol_util', 'total_acc', 'total_pymnt', 'total_pymnt_inv', 'total_rec_prncp', 'total_rec_int', 'total_rec_late_fee', 'recoveries', 'collection_recovery_fee', 'last_pymnt_amnt', 'collections_12_mths_ex_med', 'mths_since_last_major_derog', 'acc_now_delinq', 'tot_coll_amt', 'tot_cur_bal', 'total_rev_hi_lim'] categorical_columns = ['home_ownership', 'verification_status', 'pymnt_plan', 'purpose', 'initial_list_status', 'application_type'] for key in numerical_columns: my_feature_columns.append(tf.feature_column.numeric_column(key=key)) for key in categorical_columns: my_feature_columns.append(tf.feature_column.categorical_column_with_hash_bucket(key=key, hash_bucket_size = 10)) classifier = tf.estimator.LinearClassifier( feature_columns=my_feature_columns ) classifier.train( input_fn=lambda:my_input_fn(X_train, Y_train, 100), steps=100 ) eval_result = classifier.evaluate( input_fn=lambda:my_eval_fn(X_test, Y_test, 100) ) print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))

如果cb是一个函数,则首先检查truthy值,然后调用该函数。

如果cbcb,则第一部分为falsy,第二部分未执行。

null

答案 1 :(得分:0)

现在 2021 年:Optional chaining

cb?.()

如果 cb 是 null - cb 被调用。

如果 cb 是一个函数,cb 调用。

注意:如果 cb 是一个非空/未定义的值,(例如 23 或 false)那么这将抛出一个 TypeError。