我有不同形状的结构:
struct Triangle { points: Vec<u8> }
struct Square { points: Vec<u8> }
struct Pentagon { points: Vec<u8> }
我有一个特性CursorReadWrite
:
use std::io::Cursor;
pub trait CursorReadWrite {
fn mwrite(&mut self, writer: &mut Cursor<Vec<u8>>) -> &mut Cursor<Vec<u8>>;
fn mread(&mut self, reader: &mut Cursor<Vec<u8>>);
}
我可以为Triangle
,Square
等
impl CursorReadWrite for Triangle {
fn mwrite(&mut self, writer: &mut Cursor<Vec<u8>>) -> &mut Cursor<Vec<u8>> {
//do some work and write the data on Cursor<>
writer.write(somedata);
return writer;
}
fn mread(&mut self, reader: &mut Cursor<Vec<u8>>) {
//read data and do some work and save it in mutable self ( Triangle, Square etc)
self.points = somedata;
}
}
像这样调用函数
let csd = Cursor::new(Vec::<u8>::new());
let mut t = Triangle::default();
let new_csd = t.mwrite(&mut csd);
t.mread(&mut new_csd);
它给出了这个错误
error[E0623]: lifetime mismatch
|
25 | fn mwrite(&mut self,writer: &mut Cursor<Vec<u8>>) -> &mut Cursor<Vec<u8>>{
| -------------------- ----------------------------
| |
| this parameter and the return type are declared with different lifetimes...
...
28 | return writer;
| ^^^^^^^^^^^^ ...but data from `writer` is returned here
答案 0 :(得分:1)
修复代码并不容易,因为有大量缺失的内容,但您可能希望使用显式生命周期重新定义mwrite
:
pub trait CursorReadWrite<'a, 'b> {
fn mwrite(&'a mut self, writer: &'b mut Cursor<Vec<u8>>) -> &'b mut Cursor<Vec<u8>>;
fn mwread(&mut self, reader: &mut Cursor<Vec<u8>>);
}
impl<'a, 'b> CursorReadWrite<'a, 'b> for Triangle{
fn mwrite(&'a mut self, writer: &'b mut Cursor<Vec<u8>>) -> &'b mut Cursor<Vec<u8>>{
...
}
}
当您有超过1个输入生命周期时,编译器无法确定您要为输出选择哪一个。引用lifetime elision rules:
作为参考的每个参数都有自己的生命周期参数。换句话说,具有一个参数的函数获得一个生命周期 参数:fn
foo<'a>(x: &'a i32)
,具有两个参数的函数 两个单独的生命周期参数:fn foo<'a, 'b>(x: &'a i32, y: &'b i32)
,依此类推。(...)
- 醇>
如果有多个输入生命周期参数,但其中一个是
&self
或&mut self
,因为这是一种方法,那么自我的生命周期 被分配给所有输出生命周期参数。 (...)