如何计算缺失的输出值

时间:2018-05-07 16:11:56

标签: r lme4 mixed-models

我创建了一个涉及两个变量的混合模型(一个连续,一个有三个级别),并且无法弄清楚如何计算它们各自的值。型号代码:

*Generalized linear mixed model fit by maximum likelihood (Laplace 
Approximation) ['glmerMod']
 Family: binomial  ( logit )

Formula: active ~ tair * breeding + (1 | id/family)

Data: adata_sc
 AIC      BIC   logLik deviance df.resid 
1948.6   2000.1   -966.3   1932.6     4584 
Scaled residuals: 
 Min       1Q   Median       3Q      Max 
-24.1182   0.0720   0.1422   0.2636   1.5627 

Random effects:
Groups    Name        Variance Std.Dev.
family:id (Intercept) 0.9841   0.992   
id        (Intercept) 1.1295   1.063   
Number of obs: 4592, groups:  family:id, 61; id, 44

Fixed effects:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept)     8.34402    0.52641  15.851   <2e-16 ***
tair           -0.22059    0.01669 -13.218   <2e-16 ***
breeding1       3.85335    1.92894   1.998   0.0458 *  
breeding2      -1.38633    1.24099  -1.117   0.2639    
tair:breeding1 -0.14504    0.06889  -2.105   0.0353 *  
tair:breeding2  0.10345    0.04664   2.218   0.0266 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
            (Intr) tair   brdng1 brdng2 tr:br1
tair        -0.838                            
breeding1   -0.175  0.216                     
breeding2   -0.309  0.335  0.097              
tair:brdng1  0.166 -0.230 -0.981 -0.097       
tair:brdng2  0.327 -0.374 -0.100 -0.975  0.103*

从上面的输出中,我如何计算育种0的值(我假设是截距),还有tair:brdng0?

0 个答案:

没有答案