给出两个data.table:
dt1 <- data.table(id = c(1,-99,2,2,-99), a = c(2,1,-99,-99,3), b = c(5,3,3,2,5), c = c(-99,-99,-99,2,5))
dt2 <- data.table(id = c(2,3,1,4,3),a = c(6,4,3,2,6), b = c(3,7,8,8,3), c = c(2,2,4,3,2))
> dt1
id a b c
1: 1 2 5 -99
2: -99 1 3 -99
3: 2 -99 3 -99
4: 2 -99 2 2
5: -99 3 5 5
> dt2
id a b c
1: 2 6 3 2
2: 3 4 7 2
3: 1 3 8 4
4: 4 2 8 3
5: 3 6 3 2
如何用dt2的值替换-99的dt1?
通缉的结果应该是dt3:
> dt3
id a b c
1: 1 2 5 2
2: 3 1 3 2
3: 2 3 3 4
4: 2 2 2 2
5: 3 3 5 5
答案 0 :(得分:3)
您可以执行以下操作:
dt3 <- as.data.frame(dt1)
dt2 <- as.data.frame(dt2)
dt3[dt3 == -99] <- dt2[dt3 == -99]
dt3
# id a b c
# 1 1 2 5 2
# 2 3 1 3 2
# 3 2 3 3 4
# 4 2 2 2 2
# 5 3 3 5 5
答案 1 :(得分:3)
如果您的数据类型相同(如您的示例所示),那么将它们转换为matrix
要快得多且透明:
dt1a <- as.matrix(dt1) ## convert to matrix
dt2a <- as.matrix(dt2)
# make a matrix of the same shape to access the right entries
missing_idx <- dt1a == -99
dt1a[missing_idx] <- dt2a[missing_idx] ## replace by reference
这是一个矢量化操作,所以它应该很快。
注意:如果这样做,请确保两个数据源完全匹配行/列的形状和顺序。如果他们没有,那么您需要通过相关密钥加入并选择正确的列。
编辑:可能不需要转换为矩阵。请参阅kath的答案以获得更简洁的解决方案。
答案 2 :(得分:2)
这个简单的技巧可以有效地发挥作用。
dt1<-as.matrix(dt1)
dt2<-as.matrix(dt2)
index.replace = dt1==-99
dt1[index.replace] = dt2[index.replace]
as.data.table(dt1)
as.data.table(dt2)
答案 3 :(得分:2)
简单的方法是使用setDF
函数转换为data.frame
并使用数据框子设置方法。最后还原到data.table
。
#Change to data.frmae
setDF(dt1)
setDF(dt2)
# Perform assignment
dt1[dt1==-99] = dt2[dt1==-99]
# Restore back to data.table
setDT(dt1)
setDT(dt2)
dt1
# id a b c
# 1 1 2 5 2
# 2 3 1 3 2
# 3 2 3 3 4
# 4 2 2 2 2
# 5 3 3 5 5
答案 4 :(得分:1)
这应该有用,一个简单的方法:
for (i in 1:nrow(dt1)){
for (j in 1:ncol(dt1)){
if (dt1[i,j] == -99) dt1[i,j] = dt2[i,j]
}
}