Tensorflow - 如何导入MNIST数据库

时间:2018-05-06 18:40:47

标签: python tensorflow mnist

我想使用MNIST数据库训练模型。我正在研究Tensorflow教程Tensorflow tutorial。建议的导入数据库的方法是使用mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)但我需要使用类似的东西:

with open('my/directory/train-images-idx3-ubyte.gz', 'rb') as f:
  train_images = extract_images(f)
with open('my/directory/train-labels-idx1-ubyte.gz', 'rb') as f:
  train_labels = extract_images(f)
         ...

多数人提出了如何调整代码以使用我的train_images, train_lables, test_images, test_lables

的问题
def main(_):
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)

  # Create the model
  x = tf.placeholder(tf.float32, [None, 784])

  # Define loss and optimizer
  y_ = tf.placeholder(tf.float32, [None, 10])

  # Build the graph for the deep net
  y_conv, keep_prob = deepnn(x)

  with tf.name_scope('loss'):
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,
                                                            logits=y_conv)
  cross_entropy = tf.reduce_mean(cross_entropy)

  with tf.name_scope('adam_optimizer'):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

  with tf.name_scope('accuracy'):
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    correct_prediction = tf.cast(correct_prediction, tf.float32)
  accuracy = tf.reduce_mean(correct_prediction)

  graph_location = tempfile.mkdtemp()
  print('Saving graph to: %s' % graph_location)
  train_writer = tf.summary.FileWriter(graph_location)
  train_writer.add_graph(tf.get_default_graph())

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i % 100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x: batch[0], y_: batch[1], keep_prob: 1.0})
        print('step %d, training accuracy %g' % (i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    print('test accuracy %g' % accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--data_dir', type=str,
                      default='/tmp/tensorflow/mnist/input_data',
                      help='Directory for storing input data')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

1 个答案:

答案 0 :(得分:0)

使用TF2导入mnist数据集的推荐方法如下:

从tensorflow.keras.datasets

导入mnist (X_train,Y_train),(X_test,Y_test)= mnist.load_data()