我在尝试获取召回分数时收到此错误。
X_test = test_pos_vec + test_neg_vec
Y_test = ["pos"] * len(test_pos_vec) + ["neg"] * len(test_neg_vec)
recall_average = recall_score(Y_test, y_predict, average="binary")
print(recall_average)
这会给我:
C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:1030: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
if pos_label not in present_labels:
Traceback (most recent call last):
File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
main()
File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
recall_average = recall_score(Y_test, y_predict, average="binary")
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
sample_weight=sample_weight)
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1036, in precision_recall_fscore_support
(pos_label, present_labels))
ValueError: pos_label=1 is not a valid label: array(['neg', 'pos'],
dtype='<U3')
我试图改变&#39; pos&#39;在1和&#39; neg&#39;在0这样:
for i in range(len(Y_test)):
if 'neg' in Y_test[i]:
Y_test[i] = 0
else:
Y_test[i] = 1
但是这给了我另一个错误:
C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:181: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
score = y_true == y_pred
Traceback (most recent call last):
File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
main()
File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
recall_average = recall_score(Y_test, y_predict, average="binary")
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
sample_weight=sample_weight)
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1026, in precision_recall_fscore_support
present_labels = unique_labels(y_true, y_pred)
File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\multiclass.py", line 103, in unique_labels
raise ValueError("Mix of label input types (string and number)")
ValueError: Mix of label input types (string and number)
我要做的是获取指标:准确度,精确度,召回率,f_measure。使用average='weighted'
,我得到相同的结果:准确度=召回。我想这不对,所以我更改了average='binary'
,但我有这些错误。有什么想法吗?
答案 0 :(得分:3)
recall_average = recall_score(Y_test, y_predict, average="binary", pos_label="neg")
使用"neg"
或"pos"
作为pos_label
,此错误不会再出现。
答案 1 :(得分:0)
用(pos_label=pos)
因此使用:
Recall=recall_score(Y_test, Y_predict, pos_label='pos')
答案 2 :(得分:0)
遇到此错误时,意味着target
变量的值不是recall_score()
的预期值,默认情况下,对于肯定情况,其值为 1 和 0(否定情况下) [这也适用于precision_score()
]
根据您提到的错误:
pos_label=1 is not a valid label: array(['neg', 'pos']
很明显,您的积极情景的值为pos
而不是1
,而消极的neg
的价值观是0
。
然后,您必须选择纠正此不匹配的选项:
recall_score()
出现以下情况时,请更改pos
中的默认值:recall_average = recall_score(Y_test, y_predict, average="binary", pos_label='pos')
1
或0
Y_test = Y_test.map({'pos': 1, 'neg': 0}).astype(int)