鞭打中的卡夫卡消费者

时间:2018-05-05 16:16:13

标签: apache-kafka apache-flink

我正在使用kafka和apache flink。我试图从apache flink中的kafka主题消费记录(以avro格式)。下面是我正在尝试的一段代码。

使用自定义反序列化器从主题中反序列化avro记录。

我发送给主题" test-topic"的数据的Avro架构如下所示。

{
  "namespace": "com.example.flink.avro",
  "type": "record",
  "name": "UserInfo",
  "fields": [
    {"name": "name", "type": "string"}
  ]
}

我使用的自定义反序列化器如下所示。

public class AvroDeserializationSchema<T> implements DeserializationSchema<T> {

    private static final long serialVersionUID = 1L;

    private final Class<T> avroType;

    private transient DatumReader<T> reader;
    private transient BinaryDecoder decoder;

    public AvroDeserializationSchema(Class<T> avroType) {
        this.avroType = avroType;
    }


    public T deserialize(byte[] message) {
        ensureInitialized();
        try {
            decoder = DecoderFactory.get().binaryDecoder(message, decoder);
            T t = reader.read(null, decoder);
            return t;
        } catch (Exception ex) {
            throw new RuntimeException(ex);
        }
    }

    private void ensureInitialized() {
        if (reader == null) {
            if (org.apache.avro.specific.SpecificRecordBase.class.isAssignableFrom(avroType)) {
                reader = new SpecificDatumReader<T>(avroType);
            } else {
                reader = new ReflectDatumReader<T>(avroType);
            }
        }
    }


    public boolean isEndOfStream(T nextElement) {
        return false;
    }


    public TypeInformation<T> getProducedType() {
        return TypeExtractor.getForClass(avroType);
    }
}

这就是我的flink应用程序的编写方式。

public class FlinkKafkaApp {


    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Properties kafkaProperties = new Properties();
        kafkaProperties.put("bootstrap.servers", "localhost:9092");
        kafkaProperties.put("group.id", "test");

        AvroDeserializationSchema<UserInfo> schema = new AvroDeserializationSchema<UserInfo>(UserInfo.class);

        FlinkKafkaConsumer011<UserInfo> consumer = new FlinkKafkaConsumer011<UserInfo>("test-topic", schema, kafkaProperties);

        DataStreamSource<UserInfo> userStream = env.addSource(consumer);

        userStream.map(new MapFunction<UserInfo, UserInfo>() {

            @Override
            public UserInfo map(UserInfo userInfo) {
                return userInfo;
            }
        }).print();

        env.execute("Test Kafka");

    }

我正在尝试打印发送到主题的记录,如下所示。 {&#34;名称&#34; :&#34; SUMIT&#34;}

输出:

我得到的输出是 {&#34;名称&#34;:&#34;&#34;}

任何人都可以帮忙弄清楚这里的问题是什么,为什么我没有得到{&#34; name&#34; :&#34; sumit&#34;}作为输出。

1 个答案:

答案 0 :(得分:0)

Flink文档说: Flink的Kafka使用者称为FlinkKafkaConsumer08(对于Kafka 0.9.0.x版本,则称为09,等等;对于Kafka> = 1.0.0版本,则仅称为FlinkKafkaConsumer)。它提供对一个或多个Kafka主题的访问。

我们不必编写自定义反序列化器即可使用来自Kafka的Avro消息。

-要读取SpecificRecords:

DataStreamSource<UserInfo> stream = streamExecutionEnvironment.addSource(new FlinkKafkaConsumer<>("test_topic", AvroDeserializationSchema.forSpecific(UserInfo.class), properties).setStartFromEarliest());

要读取GenericRecords:

Schema schema = Schema.parse("{"namespace": "com.example.flink.avro","type": "record","name": "UserInfo","fields": [{"name": "name", "type": "string"}]}");
DataStreamSource<GenericRecord> stream = streamExecutionEnvironment.addSource(new FlinkKafkaConsumer<>("test_topic", AvroDeserializationSchema.forGeneric(schema), properties).setStartFromEarliest());

有关更多详细信息:https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/kafka.html#kafka-consumer