这里我有一个Pandas Dataframe,其中包含一个' body'其中包含文本。
body
0 David Beckham's dreams of kick starting his ow...
1 Ascension Island. Picture: NASA, via Wikicommo...
2 So far this downturn, almost 10,000 direct min...
3 \nHOUSTON - Wendy Davis continued to capitaliz...
4 If something can't go on for ever, it won't. -...
5 \nPublished 04/10/2014 | 02:30\nTaoiseach Enda...
6 Ebola is having catastrophic economic conseque...
7 A British man has been raped at the Oktoberfes...
8 \nA top fashion journalist has sharply critiqu...
9 All over Ontario, giant wind turbines are spro...
10 Geneva - The Red Cross said on Monday that Sud...
11 \nPop quiz: What do pickles, vinegar, tempeh, ...
... ...
2284 rows × 1 columns
我希望获得一个DataFrame,即' body'变成标签形式。我这样做是一个基本案例:
from nltk import pos_tag
pog = dict()
for txt in df['body'][0:3].str.split():
text = nltk.pos_tag(txt)
for postag in text:
pog[postag[0]] = postag[1]
print(pog)
输出是:
{'David': 'NNP', "Beckham's": 'NNP', 'dreams': 'NNS', 'of': 'IN','kick': 'NN', 'starting': 'VBG', 'his': 'PRP$', 'own': 'JJ', 'American': 'JJ', 'soccer': 'NN', ...}
然后我写道:
df['body'] = df['body'].replace(pog)
print(df)
输出与上面的DataFrame完全相同,没有任何变化。我的想法是使用字典用原始DataFrame中的标签替换单词。
我只是想知道为什么,如果有人有更好的想法用标签替换这些单词,请显示,thx。
答案 0 :(得分:1)
在pandas中,您可以链接apply
个函数来获取输出。
## sample data frame
df = pd.DataFrame({'senten': ['I am not dancing','You are playing']})
df['new_sent'] = (df['senten']
.apply(word_tokenize)
.apply(pos_tag)
.apply(lambda x: ' '.join([y[1] for y in x])))
print(df)
senten new_sent
0 I am not dancing PRP VBP RB VBG
1 You are playing PRP VBP VBG