我正在使用PyCharm 2018.1使用Python 3.4和Spark 2.3通过pip在virtualenv中安装。本地主机上没有hadoop安装,因此没有Spark安装(因此没有SPARK_HOME,HADOOP_HOME等)
当我尝试这个时:
from pyspark import SparkConf
from pyspark import SparkContext
conf = SparkConf()\
.setMaster("local")\
.setAppName("pyspark-unittests")\
.set("spark.sql.parquet.compression.codec", "snappy")
sc = SparkContext(conf = conf)
inputFile = sparkContext.textFile("s3://somebucket/file.csv")
我明白了:
py4j.protocol.Py4JJavaError: An error occurred while calling o23.partitions.
: java.io.IOException: No FileSystem for scheme: s3
如果在本地模式下运行pyspark而没有在本地安装完整的Hadoop,我如何从s3读取?
FWIW - 当我在非本地模式下在EMR节点上执行它时,这非常有用。
以下内容不起作用(同样的错误,虽然它确实解析并下载了依赖项):
import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages "org.apache.hadoop:hadoop-aws:3.1.0" pyspark-shell'
from pyspark import SparkConf
from pyspark import SparkContext
conf = SparkConf()\
.setMaster("local")\
.setAppName("pyspark-unittests")\
.set("spark.sql.parquet.compression.codec", "snappy")
sc = SparkContext(conf = conf)
inputFile = sparkContext.textFile("s3://somebucket/file.csv")
相同(糟糕)的结果:
import os
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars "/path/to/hadoop-aws-3.1.0.jar" pyspark-shell'
from pyspark import SparkConf
from pyspark import SparkContext
conf = SparkConf()\
.setMaster("local")\
.setAppName("pyspark-unittests")\
.set("spark.sql.parquet.compression.codec", "snappy")
sc = SparkContext(conf = conf)
inputFile = sparkContext.textFile("s3://somebucket/file.csv")
答案 0 :(得分:2)
在本地访问S3时,您应该使用s3a
协议。确保首先将密钥和密钥添加到SparkContext
。像这样:
sc = SparkContext(conf = conf)
sc._jsc.hadoopConfiguration().set('fs.s3a.access.key', 'awsKey')
sc._jsc.hadoopConfiguration().set('fs.s3a.secret.key', 'awsSecret')
inputFile = sparkContext.textFile("s3a://somebucket/file.csv")
答案 1 :(得分:2)
所以Glennie的答案很接近但不是你的情况会有效。关键是要选择正确的依赖版本。如果你看一下虚拟环境
所有内容都指向一个版本2.7.3
,您还需要使用
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages "org.apache.hadoop:hadoop-aws:2.7.3" pyspark-shell'
您应该通过检查项目虚拟环境中的路径venv/Lib/site-packages/pyspark/jars
来验证安装使用的版本
之后,您可以默认使用s3a
或s3
定义相同的处理程序类
# Only needed if you use s3://
sc._jsc.hadoopConfiguration().set("fs.s3.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
sc._jsc.hadoopConfiguration().set('fs.s3a.access.key', 'awsKey')
sc._jsc.hadoopConfiguration().set('fs.s3a.secret.key', 'awsSecret')
s3File = sc.textFile("s3a://myrepo/test.csv")
print(s3File.count())
print(s3File.id())
输出低于
答案 2 :(得分:0)
准备:
将以下行添加到您的spark配置文件中,对于我的本地pyspark,它是specDone: function(result) {
console.log('Spec: ' + result.description + ' was ' + result.status);
for(var i = 0; i < result.failedExpectations.length; i++) {
console.log('Failure: ' + result.failedExpectations[i].message);
console.log(result.failedExpectations[i].stack);
}
}
/usr/local/spark/conf/spark-default.conf
python文件内容:
spark.hadoop.fs.s3a.access.key=<your access key>
spark.hadoop.fs.s3a.secret.key=<your secret key>
提交:
from __future__ import print_function
import os
from pyspark import SparkConf
from pyspark import SparkContext
os.environ["PYSPARK_PYTHON"] = "/usr/bin/python3"
os.environ["PYSPARK_DRIVER_PYTHON"] = "/usr/bin/python3"
if __name__ == "__main__":
conf = SparkConf().setAppName("read_s3").setMaster("local[2]")
sc = SparkContext(conf=conf)
my_s3_file3 = sc.textFile("s3a://store-test-1/test-file")
print("file count:", my_s3_file3.count())