我想在Set
中概括F#
的概念。我想用不等式来定义集合。这将有助于我简化代码的某些部分。所以我创建了一个类型MySet
,如下所示:
type Comparison = | GE
| GT
| LE
| LT
| EQ
type ComparisonOps<'t> = { gt: 't->'t->bool
ge: 't->'t->bool
eq: 't->'t->bool
le: 't->'t->bool
lt: 't->'t->bool }
type MySet<'t when 't : comparison> =
| List of list<'t>
| Sequence of seq<'t>
| Array of 't []
| String of string
| Set of Set<'t>
| Compare of (ComparisonOps<'t>*Comparison*'t)
注意:我打算稍后递归MySet
,允许工会和交叉点,但就本问题而言,这不是必需的。
新MySet
类型的重点是允许检查不同类型的元素是否属于不同情况的集合。这由以下功能实现:
let elementOf<'t when 't : comparison> (st: MySet<'t>) (x: 't) : bool =
match st with
| List xs -> List.contains x xs
| Sequence s -> Seq.contains x s
| Array a -> Array.contains x a
| Set st -> Set.contains x st
| String str -> match box str with
| :? string as s -> match box x with
| :? string as z -> s.Contains z
| _ -> false
| _ -> false
| Compare (comp: ComparisonOps<'t>*Comparison*'t) ->
let compOps, cmp, y = comp
match cmp with
| GT -> compOps.gt x y
| GE -> compOps.ge x y
| EQ -> compOps.eq x y
| LE -> compOps.le x y
| LT -> compOps.lt x y
注意:我还计划概括elementOf
允许函数应用,但这里不再需要这个。
该功能有效:
let myStringSet = MySet.String("XYZ")
let strb = "X" |> elementOf<string> myStringSet
printfn "strb = %b" strb // strb = true
let myListSet = MySet.List([0..10])
let listb = 5 |> elementOf<int> myListSet
printfn "listb = %b" listb // listb = true
let myCompSet = MySet.Compare((ComparisonFloat, GT, 0.0))
let compb = -1.0 |> elementOf<float> myCompSet
printfn "compb = %b" compb // compb = false
let myCompSet2 = MySet.Compare((ComparisonString, LT, "XYZ"))
let compb2 = "XA" |> elementOf<string> myCompSet2
printfn "compb2 = %b" compb2 // compb2 = true
这很好,但我想知道我是否真的需要创建操作字典ComparisonOps
,因为像<
这样的操作无论如何都是int,float和string类型的多态。
消除ComparisonOps
可以大大简化代码。这可能吗?
答案 0 :(得分:7)
正如Fyodor Soikin所说,听起来你想要的是将一个集合定义为满足谓词的所有元素:
type MySet<'t> = | MySet of ('t -> bool)
然后设置操作很容易定义:
let intersect (MySet p1) (MySet p2) = MySet(fun t -> p1 t && p2 t)
所有特定的构造函数都可以转换为简单的函数:
let ofList l = MySet(fun t -> List.contains t l)
let lt x = MySet(fun t -> t < x)