我们说我有一个类型为vector1 = c("dog", "cat", "fish")
vector2 = c("fish", "fish", "fish")
的R向量:
vector1
第一个向量vector2
包含三个不同的元素:狗,猫,鱼
但是,length(unique(vector1))==1
包含所有相同的元素。
我正在寻找一种在R矢量中检查此属性的有效方法,最好使用基数R.
我的想法是使用以下内容:
检查TRUE
。如果FALSE
,那么只有1个元素。如果{{1}},则有很多。
答案 0 :(得分:5)
如果你关注速度,那么@ AshOfFire' all(vec == vec[1])
或uniqueN(vec) == 1
是最好的。当元素不同时,all(...)
会有更好的表现,但当它们相同时会更糟。此处还有其他帖子:Test for equality among all elements of a single vector
由于你明确询问速度,我不知道这是否应该被标记为愚蠢。做一些快速微基准测试,你可以看到相对速度:
library(data.table)
benchmark_vec <- function(vec){
microbenchmark::microbenchmark(length(unique(vec)) == 1,
all(vec == vec[1]),
isTRUE(max(vec) == min(vec)),
uniqueN(vec)==1,
unit = "relative")
}
看起来您最好的选择可能是使用uniqueN(vec) == 1
,因为isTRUE(max(vec) == min(vec))
在元素不相同时非常慢。
相同元素的向量:
benchmark_vec(rep("a", 1e4))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 6.059888 8.980080 8.807812 9.057240 10.131907 6.538035 100
# all(vec == vec[1]) 2.039980 2.117614 2.517966 2.769089 2.820726 2.147200 100
# isTRUE(max(vec) == min(vec)) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# uniqueN(vec) == 1 1.679993 1.794075 2.148665 2.442206 2.547134 1.385782 100
benchmark_vec(rep("a", 1e5))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 5.732161 6.898531 7.935981 7.098417 6.776363 52.733981 100
# all(vec == vec[1]) 2.084232 2.416316 2.366826 2.482896 2.454888 2.025258 100
# isTRUE(max(vec) == min(vec)) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# uniqueN(vec) == 1 1.254857 1.653767 1.632287 1.707769 1.755275 1.401932 100
benchmark_vec(rep("a", 1e6))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 5.993300 6.057139 6.478008 6.083278 6.104486 9.124542 100
# all(vec == vec[1]) 2.249211 2.182959 2.261631 2.182345 2.224141 6.421657 100
# isTRUE(max(vec) == min(vec)) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# uniqueN(vec) == 1 1.325453 1.451214 1.869176 1.457588 1.470810 6.657961 100
不同元素的矢量:
benchmark_vec(sample(LETTERS, 1e4, replace = TRUE))
#Unit: relative
# expr min lq mean median uq # max neval
# length(unique(vec)) == 1 2.989151 2.999928 3.233178 3.031249 3.260122 4.471498 100
# all(vec == vec[1]) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# isTRUE(max(vec) == min(vec)) 92.619106 91.765377 89.899963 92.227913 93.951104 64.507502 100
# uniqueN(vec) == 1 1.478271 1.494703 1.608562 1.531235 1.637707 2.528502 100
benchmark_vec(sample(LETTERS, 1e5, replace = TRUE))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 3.142858 3.010220 2.945582 2.887597 2.925129 4.482119 100
# all(vec == vec[1]) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# isTRUE(max(vec) == min(vec)) 97.273487 79.818135 73.850769 75.442748 71.441439 41.772795 100
# uniqueN(vec) == 1 1.280180 1.431999 2.009661 1.431815 1.447287 32.446761 100
benchmark_vec(sample(LETTERS, 1e6, replace = TRUE))
#Unit: relative
# expr min lq mean median uq max neval
# length(unique(vec)) == 1 3.228670 2.898367 2.799075 2.941651 2.914313 1.360938 100
# all(vec == vec[1]) 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 100
# isTRUE(max(vec) == min(vec)) 92.506220 79.923456 67.347683 78.362151 75.028194 13.611664 100
# uniqueN(vec) == 1 2.263843 2.031869 1.861165 2.058220 2.051759 1.129074 100
答案 1 :(得分:4)
或者,您可以使用> all(vector1 == vector1[1])
[1] FALSE
> all(vector2 == vector2[1])
[1] TRUE
。
{{1}}
答案 2 :(得分:2)
!any(vec < vec[1])