我将逻辑回归模型拟合到R中的训练数据集,更具体地说是具有L1惩罚的LASSO回归。我使用了glmnet
包。模型的代码如下所示。
t1 <- Sys.time()
glmnet_classifier <- cv.glmnet(x = dtm_train_tfidf,
y = tweets_train[['sentiment']],
family = 'binomial',
# L1 penalty
alpha = 1,
# interested in the area under ROC curve
type.measure = "auc",
# 5-fold cross-validation
nfolds = 5,
# high value is less accurate, but has faster training
thresh = 1e-3,
# again lower number of iterations for faster training
maxit = 1e3)
print(difftime(Sys.time(), t1, units = 'mins'))
preds <- predict(glmnet_classifier, dtm_test_tfidf, type = 'response')[ ,1]
现在我想绘制ROC曲线。但是,我无法弄清楚如何准确地绘制它。
当我plot(glmnet_classifier)
这是我收到的:
由于这不是Roc曲线,我想知道是否有人知道如何在R中绘制它?我已经提到了ROCR
包,但它给了我一个错误:
roc.perf = performance(preds, measure = "tpr", x.measure = "fpr")
有人可以帮忙吗? 非常感谢你!
答案 0 :(得分:5)
library(pROC)
data("aSAH")
fit <- glm(outcome ~ gender + age + wfns + s100b , data = aSAH, family = binomial)
roc(aSAH$outcome, as.vector(fitted.values(fit)), percent=F, boot.n=1000, ci.alpha=0.9, stratified=FALSE, plot=TRUE, grid=TRUE, show.thres=TRUE, legacy.axes = TRUE, reuse.auc = TRUE,
# print.thres = c(0.30,0.35, 0.40, 0.45,0.48, 0.50,0.55, 0.60),#
print.auc = TRUE, print.thres.col = "blue", ci=TRUE, ci.type="bars", print.thres.cex = 0.7, main = paste("ROC curve using","(N = ",nrow(aSAH),")") )
我希望它有所帮助;)
答案 1 :(得分:2)
ROCR
的问题在于您直接在预测中使用performance
而不是在标准化预测对象上使用library(ggplot2) # For diamonds data
library(ROCR) # For ROC curves
library(glmnet) # For regularized GLMs
# Classification problem
class <- diamonds$price > median(diamonds$price) # The top 50% valued diamonds
X <- as.matrix(diamonds[, c('carat', 'depth', 'x', 'y', 'z')]) # Predictor variables
# L1 regularized logistic regression
fit <- cv.glmnet(x = X, y = class, family = 'binomial', type.measure = 'class', alpha = 1)
# Predict from model
preds <- predict(fit, newx = X, type = 'response')
# ROCR for ROC curve
library(ROCR)
# Calculate true positive rate and false positive rate on the prediction object
perf <- performance(prediction(preds, class), 'tpr', 'fpr')
plot(perf)
。以下是如何绘制ROC曲线的示例
df['first_x'] = df.groupby('id1')['x'].transform('first')