我刚开始使用Tokens Regex。我还没有找到能够满足我需要的介绍或教程。 (如果我错过了某些内容,感谢链接!)
超短,简单的想法是我想做像使用
这样的事情 pattern: ( ( [ { ner:PERSON } ]) /was/ /born/ /on/ ([ { ner:DATE } ]) )
(来自https://nlp.stanford.edu/software/tokensregex.html)
匹配" John Smith出生于1999年3月1日",然后能够提取" John Smith"作为人和" 1999年3月1日"作为约会。我通过几次网络搜索拼凑了以下内容。我可以使用简单的Java正则表达式/John/
进行匹配,但是当我使用NER时,我没有尝试过(所有从网页搜索中复制的示例,并进行了一些调整)匹配。
为清晰起见编辑:(目前成功/失败在下面的代码中来自matcher2.matches()
是真/假。)
我不知道我是否需要明确提及某些模型或注释或其他内容,或者我是否遗漏了其他内容,或者我是否只是以错误的方式接近它。
非常感谢任何见解!谢谢!
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.ling.tokensregex.TokenSequenceMatcher;
import edu.stanford.nlp.ling.tokensregex.TokenSequencePattern;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.util.CoreMap;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.junit.Test;
public class StanfordSandboxTest {
private static final Log log = LogFactory.getLog(StanfordSandboxTest.class);
@Test
public void testFirstAttempt() {
Properties props2;
StanfordCoreNLP pipeline2;
TokenSequencePattern pattern2;
Annotation document2;
List<CoreMap> sentences2;
TokenSequenceMatcher matcher2;
String text2;
props2 = new Properties();
props2.put("annotators", "tokenize, ssplit, pos, lemma, ner, regexner, parse, dcoref");
pipeline2 = new StanfordCoreNLP(props2);
text2 = "March 1, 1999";
pattern2 = TokenSequencePattern.compile("pattern: (([{ner:DATE}])");
document2 = new Annotation(text2);
pipeline2.annotate(document2);
sentences2 = document2.get(CoreAnnotations.SentencesAnnotation.class);
matcher2 = pattern2.getMatcher(sentences2);
log.info("testFirstAttempt: Matches2: " + matcher2.matches());
props2 = new Properties();
props2.put("annotators", "tokenize, ssplit, pos, lemma, ner, regexner, parse, dcoref");
pipeline2 = new StanfordCoreNLP(props2);
text2 = "John";
pattern2 = TokenSequencePattern.compile("/John/");
document2 = new Annotation(text2);
pipeline2.annotate(document2);
sentences2 = document2.get(CoreAnnotations.SentencesAnnotation.class);
matcher2 = pattern2.getMatcher(sentences2);
log.info("testFirstAttempt: Matches2: " + matcher2.matches());
}
}
答案 0 :(得分:0)
示例代码:
package edu.stanford.nlp.examples;
import edu.stanford.nlp.util.*;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import java.util.*;
public class TokensRegexExampleTwo {
public static void main(String[] args) {
// set up properties
Properties props = new Properties();
props.setProperty("annotators", "tokenize,ssplit,pos,lemma,ner,tokensregex");
props.setProperty("tokensregex.rules", "multi-step-per-org.rules");
props.setProperty("tokensregex.caseInsensitive", "true");
// set up pipeline
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
// set up text to annotate
Annotation annotation = new Annotation("Joe Smith works for Apple Inc.");
// annotate text
pipeline.annotate(annotation);
// print out found entities
for (CoreMap sentence : annotation.get(CoreAnnotations.SentencesAnnotation.class)) {
for (CoreLabel token : sentence.get(CoreAnnotations.TokensAnnotation.class)) {
System.out.println(token.word() + "\t" + token.ner());
}
}
}
}
示例规则文件:
ner = { type: "CLASS", value: "edu.stanford.nlp.ling.CoreAnnotations$NamedEntityTagAnnotation" }
$ORGANIZATION_TITLES = "/inc\.|corp\./"
$COMPANY_INDICATOR_WORDS = "/company|corporation/"
ENV.defaults["stage"] = 1
{ pattern: (/works/ /for/ ([{pos: NNP}]+ $ORGANIZATION_TITLES)), action: (Annotate($1, ner, "RULE_FOUND_ORG") ) }
ENV.defaults["stage"] = 2
{ pattern: (([{pos: NNP}]+) /works/ /for/ [{ner: "RULE_FOUND_ORG"}]), action: (Annotate($1, ner, "RULE_FOUND_PERS") ) }
这会将NER标签应用于&#34; Joe Smith&#34;和#34; Apple Inc。&#34;。您可以根据具体情况进行调整。如果您想要做一些比仅应用NER标签更先进的事情,请告诉我。注意:请确保将这些规则放在名为:&#34; multi-step-per-org.rules&#34;的文件中。