我有一个看起来像这样的数据框(还有数百行)
import sets
import numpy
import copy
import time
J= {1: [6, 7],2: [2, 3], 3: [1, 6, 9], 4: [1, 5, 9], 5: [5, 8, 10], 6: [1, 3, 6, 8], 7: [5, 6, 8, 9], 8: [5, 7, 8], 9: [1, 4, 5, 8], 10: [1, 2, 4, 10]}
def KTNS(sigma=[10, 9, 4, 1, 6, 3, 7, 5, 2, 8], Jobs=J, m=10 ,capacity=4 ):
t0=time.time()
Tools = {}
Lin={}
n=len(sigma)
for i in range(1,m+1):
for e in sigma:
if i in Jobs[e]:
Tools[i]=sets.Set([])
count = 1
available_tools=sets.Set()
for e in sigma:
for i in Jobs[e]:
Tools[i].add(count)
available_tools.add(i)
count+=1
Tin=copy.deepcopy(Tools)
for e in Tin:
Lin[e]=min(Tin[e])
count=1
J = numpy.array([0] *m)
W = numpy.array([[0] * m] * n)
while count<=len(sigma):
for e in Tools:
if len(available_tools)<capacity:
reference=len(available_tools)
else:
reference=capacity
while numpy.count_nonzero(J == 1) <reference:
min_value = min(Lin.itervalues())
min_keys = [k for k in Lin if Lin[k] == min_value]
temp = min_keys[0] #min(Lin, key=Lin.get)
if min_value>count:
if len(min_keys)>=2:
if count==1:
J[temp - 1] = 1
Lin[temp] = '-'
else:
J0=W[count-2]
k=0
for elements in min_keys: #tested
if numpy.count_nonzero(J == 1) < reference:
if J0[elements-1]==1:
J[elements-1]=1
Lin[elements]='-'
k=1
else:
pass
else:
pass
if k==0:
J[temp - 1] = 1
Lin[temp] = '-'
else:
J[temp - 1] = 1
Lin[temp] = '-'
else:
J[temp-1]=1
Lin[temp] = '-'
Tin[e].discard(count)
for element in Tin:
try:
Lin[element] = min(Tin[element])
except ValueError:
Tin[element]=sets.Set([len(sigma)+1])
Lin[element]=len(sigma)+1
W[count-1]=J
J= numpy.array([0] *m)
count+=1
Cost=0
for e in range(1,len(sigma)):
temp=W[e]-W[e-1]
temp[temp < 0] = 0
Cost+=sum(temp)
return Cost+capacity,time.time()-t0
我想重新组织这个,以便按照“小时”列按时间顺序排列数据。有没有办法做到这一点?谢谢!
答案 0 :(得分:0)
您可以使用lubridate
解析器(%I是十进制小时(1-12)和%p是AM / PM指示符)转换为基于24小时的时间,然后基于此进行排序,使用{{ 1}}和dpylr
:
lubridate