我正在尝试从fixedwidth文件创建一个datafrmae并加载到postgresql数据库中。我的输入文件非常庞大(~16GB)和20万条记录。因此,如果我创建数据帧,它会消耗大部分可用的RAM。这需要很长时间才能完成。所以我想到使用chunksize(使用python生成器)选项并将记录提交到表。但它失败了'AttributeError: 'generator' object has no attribute 'to_sql'
错误。
受到这个答案的启发https://stackoverflow.com/a/47257676/2799214
输入文件:test_file.txt
XOXOXOXOXOXO9
AOAOAOAOAOAO8
BOBOBOBOBOBO7
COCOCOCOCOCO6
DODODODODODO5
EOEOEOEOEOEO4
FOFOFOFOFOFO3
GOGOGOGOGOGO2
HOHOHOHOHOHO1
sample.py
import pandas.io.sql as psql
import pandas as pd
from sqlalchemy import create_engine
def chunck_generator(filename, header=False,chunk_size = 10 ** 5):
for chunk in pd.read_fwf(filename, colspecs=[[0,12],[12,13]],index_col=False,header=None, iterator=True, chunksize=chunk_size):
yield (chunk)
def _generator( engine, filename, header=False,chunk_size = 10 ** 5):
chunk = chunck_generator(filename, header=False,chunk_size = 10 ** 5)
chunk.to_sql('sample_table', engine, if_exists='replace', schema='sample_schema', index=False)
yield row
if __name__ == "__main__":
filename = r'test_file.txt'
engine = create_engine('postgresql://ABCD:ABCD@ip:port/database')
c = engine.connect()
conn = c.connection
generator = _generator(engine=engine, filename=filename)
while True:
print(next(generator))
conn.close()
错误:
chunk.to_sql('sample_table', engine, if_exists='replace', schema='sample_schema', index=False)
AttributeError: 'generator' object has no attribute 'to_sql'
我的主要目标是提高效果。请帮我解决问题或请建议更好的方法。提前谢谢。
答案 0 :(得分:3)
'chunck_generator'将返回一个'generator'对象而不是chunk的实际元素。您需要迭代对象以从中获取块。
>>> def my_generator(x):
... for y in range(x):
... yield y
...
>>> g = my_generator(10)
>>> print g.__class__
<type 'generator'>
>>> ele = next(g, None)
>>> print ele
0
>>> ele = next(g, None)
>>> print ele
1
因此,要修复代码,您只需要循环生成器
for chunk in chunck_generator(filename, header=False,chunk_size = 10 ** 5):
yeild chunk.to_sql()
但似乎令人沮丧。我只是这样做:
import pandas.io.sql as psql
import pandas as pd
from sqlalchemy import create_engine
def sql_generator(engine, filename, header=False,chunk_size = 10 ** 5):
frame = pd.read_fwf(
filename,
colspecs=[[0,12],[12,13]],
index_col=False,
header=None,
iterator=True,
chunksize=chunk_size
):
for chunk in frame:
yield chunk.to_sql(
'sample_table',
engine,
if_exists='replace',
schema='sample_schema',
index=False
)
if __name__ == "__main__":
filename = r'test_file.txt'
engine = create_engine('postgresql://USEE:PWD@IP:PORT/DB')
for sql in sql_generator(engine, filename):
print sql
答案 1 :(得分:1)
结论: to_sql方法加载大文件效率不高。所以我在包psycopg2中使用了copy_from方法,并在创建数据帧时使用了chunksize选项。 载入980万条记录(~17GB),每条30分钟内有98列。
我删除了原始文件的原始引用(我在原帖中使用了示例文件)。
import pandas as pd
import psycopg2
import io
def sql_generator(cur,con, filename, boundries, col_names, header=False,chunk_size = 2000000):
frame = pd.read_fwf(filename,colspecs=boundries,index_col=False,header=None,iterator=True,chunksize=chunk_size,names=col_names)
for chunk in frame:
output = io.StringIO()
chunk.to_csv(output, sep='|', quoting=3, escapechar='\\' , index=False, header=False,encoding='utf-8')
output.seek(0)
cur.copy_from(output, 'sample_schema.sample_table', null="",sep="|")
yield con.commit()
if __name__ == "__main__":
boundries = [[0,12],[12,13]]
col_names = ['col1','col2']
filename = r'test_file.txt' #Refer to sample file in the original post
con = psycopg2.connect(database='database',user='username', password='pwd', host='ip', port='port')
cur = con.cursor()
for sql in sql_generator(cur,con, filename, boundries, col_names):
print(sql)
con.close()
答案 2 :(得分:0)
我建议你这样的事情:
def _generator( engine, filename, ...):
for chunk in pd.read_fwf(filename, ...):
yield chunk.to_sql('sample_table', engine, ...) # not sure about this since row was not define
for row in _generator(engine=engine, filename=filename)
print(row)