这是数据集:
# dataset call DT
DT <- data.table(
Store = rep(c("store_A","store_B","store_C","store_D","store_E"),4),
Amount = sample(1000,20))
我有两个目标必须实现:
*无需在一次操作中同时运行。
约束: 我只能通过 ONE by ONE 基本操作来执行这些操作,例如:
# For dataset & CSV export
store_A <- DT %>% group_by(Store) %>% summarise(Total = sum(Amount))
fwrite(store_A,"PATH/store_A.csv")
store_B <- DT %>% group_by(Store) %>% summarise(Total = sum(Amount))
fwrite(store_B,"PATH/store_A.csv")
.....
# For graph :
Plt_A <- ggplot(store_A,aes(x = Store, y = Total)) + geom_point()
ggsave("PATH/Plt_A.png")
Plt_B <- ggplot(store_B,aes(x = Store, y = Total)) + geom_point()
ggsave("PATH/Plt_B.png")
.....
*'for - loops'编写的方法可以找到,但令人困惑的是 在生成图表时更有效率和工作量, for loop vs lapply family - 由于真实数据集有超过<2> 100万行70列和10k组生成,因此对于循环可能会非常慢地运行并使R本身崩溃。 实际数据集中的瓶颈包含10k个“存储”组。
答案 0 :(得分:1)
因为一切都需要循环:
require(tidyverse)
require(data.table)
setwd("Your working directory")
# dataset call DT
DT <- data.table(
Store = rep(c("store_A","store_B","store_C","store_D","store_E"),4),
Amount = sample(1000,20)) %>%
#Arrange by store and amount
arrange(Store, Amount) %>%
#Nesting by store, thus the loop counter/index will go by store
nest(-Store)
#Export CSVs by store
i <- 1
for (i in 1:nrow(DT)) {
write.csv(DT$data[i], paste(DT$Store[i], "csv", sep = "."))
}
#Export Graphs by store
i <- 1
for (i in 1:nrow(DT)) {
Graph <- DT$data[i] %>%
as.data.frame() %>%
ggplot(aes(Amount)) + geom_histogram()
ggsave(Graph, file = paste0(DT$Store[i],".png"), width = 14, height = 10, units = "cm")
}