Pandas read_csv具有不同的日期解析器

时间:2018-04-30 10:36:40

标签: python pandas dataframe panel-data

我有一个带有时间序列数据的csv文件,第一列是%Y:%m:%d格式的日期,第二列是格式'%H:%M:%S'的日内时间。我想将此csv文件导入到多索引数据框或面板对象中。

使用此代码,它已经可以运行:

    _file_data = pd.read_csv(_file,
                         sep=",",
                         header=0,
                         index_col=['Date', 'Time'],
                         thousands="'",
                         parse_dates=True,
                         skipinitialspace=True
                         )

它以下列格式返回数据:

Date         Time                   Volume
2016-01-04   2018-04-25 09:01:29    53645
             2018-04-25 10:01:29    123
             2018-04-25 10:01:29    1345
             ....
2016-01-05   2018-04-25 10:01:29    123
             2018-04-25 12:01:29    213
             2018-04-25 10:01:29    123

第一个问题: 我想将第二个索引显示为纯时间对象而不是日期时间。要做到这一点,我必须在read_csv函数中声明两个不同的日期pasers,但我无法弄清楚如何。什么是“最佳”方式?

第二个问题: 在创建Dataframe之后,我将其转换为面板对象。你会建议那样做吗?面板对象是这种数据结构的更好选择吗?面板对象有哪些好处(缺点)?

2 个答案:

答案 0 :(得分:2)

第一个问题

您可以创建多个converters并在字典中定义解析器:

import pandas as pd

temp=u"""Date,Time,Volume
2016:01:04,09:00:00,53645
2016:01:04,09:20:00,0
2016:01:04,09:40:00,0
2016:01:04,10:00:00,1468
2016:01:05,10:00:00,246
2016:01:05,10:20:00,0
2016:01:05,10:40:00,0
2016:01:05,11:00:00,0
2016:01:05,11:20:00,0
2016:01:05,11:40:00,0
2016:01:05,12:00:00,213"""
def converter1(x):
    #convert to datetime and then to times
    return pd.to_datetime(x).time()

def converter2(x):
    #define format of datetime
    return pd.to_datetime(x, format='%Y:%m:%d')

#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), 
                 index_col=['Date','Time'], 
                 thousands="'",
                 skipinitialspace=True,
                 converters={'Time': converter1, 'Date': converter2})

print (df)
                     Volume
Date       Time            
2016-01-04 09:00:00   53645
           09:20:00       0
           09:40:00       0
           10:00:00    1468
2016-01-05 10:00:00     246
           10:20:00       0
           10:40:00       0
           11:00:00       0
           11:20:00       0
           11:40:00       0
           12:00:00     213

有时可以使用内置解析器,例如如果日期格式为YY-MM-DD

import pandas as pd

temp=u"""Date,Time,Volume
2016-01-04,09:00:00,53645
2016-01-04,09:20:00,0
2016-01-04,09:40:00,0
2016-01-04,10:00:00,1468
2016-01-05,10:00:00,246
2016-01-05,10:20:00,0
2016-01-05,10:40:00,0
2016-01-05,11:00:00,0
2016-01-05,11:20:00,0
2016-01-05,11:40:00,0
2016-01-05,12:00:00,213"""
def converter(x):
    #define format of datetime
    return pd.to_datetime(x).time()

#after testing replace 'pd.compat.StringIO(temp)' to 'filename.csv'
df = pd.read_csv(pd.compat.StringIO(temp), 
                 index_col=['Date','Time'], 
                 parse_dates=['Date'],
                 thousands="'",
                 skipinitialspace=True,
                 converters={'Time': converter})

print (df.index.get_level_values(0))
DatetimeIndex(['2016-01-04', '2016-01-04', '2016-01-04', '2016-01-04',
               '2016-01-05', '2016-01-05', '2016-01-05', '2016-01-05',
               '2016-01-05', '2016-01-05', '2016-01-05'],
              dtype='datetime64[ns]', name='Date', freq=None)

上一个可能的解决方案是将datetime转换为MultiIndexset_levels的时间 - 处理后:

df.index = df.index.set_levels(df.index.get_level_values(1).time, level=1)
print (df)
                     Volume
Date       Time            
2016-01-04 09:00:00   53645
           09:20:00       0
           09:40:00       0
           10:00:00    1468
2016-01-05 10:00:00     246
           10:00:00       0
           10:20:00       0
           10:40:00       0
           11:00:00       0
           11:20:00       0
           11:40:00     213

第二个问题

pandas 0.20。+中的

面板deprecated,将来会删除。

答案 1 :(得分:0)

要转换为时间序列,请使用from django.contrib import admin from .models import Advertisement, AdContract, File class FileInline(admin.TabularInline): model = File class PropertyAdmin(admin.ModelAdmin): inlines = [FileInline, ] admin.site.register(File, FileInline) admin.site.register(AdContract)

<强>实施例

pd.to_timedelta

<强>输出:

import pandas as pd
df = pd.DataFrame({"Time": ["2018-04-25 09:01:29", "2018-04-25 10:01:29", "2018-04-25 10:01:29"]})
df["Time"] = pd.to_timedelta(pd.to_datetime(df["Time"]).dt.strftime('%H:%M:%S'))
print df["Time"]