我正在尝试训练CNN分类器以在七类图像之间执行图像分类。天真地,我希望算法在训练的早期时期产生约20%的准确度,但它在~40%的准确度范围内,这使我得出结论,我的模型不知何故不能正确计算分类准确性。我做错了什么?
import glob
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.utils import plot_model
from keras.metrics import top_k_categorical_accuracy
# Define Constants
img_height = 299
img_width = 299
batch_size=40
epochs=30
train_data_dir="./train/"
validate_data_dir="./validate/"
test_data_dir="./test/"
nb_train_samples=len(glob.glob(train_data_dir+"**/*.jpg"))
nb_validation_samples= len(glob.glob(validate_data_dir+"**/*.jpg"))
nb_test_samples= len(glob.glob(test_data_dir+"**/*.jpg"))
# Define CNN Layers
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
def top_2_categorical_accuracy(y_true, y_pred):
return top_k_categorical_accuracy(y_true, y_pred, k=2)
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['categorical_accuracy', top_2_categorical_accuracy])
# Train Datagen
print("\nInitializing Training Data Generator:")
train_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
print("")
# Validation Datagen
print("Initializing Validation Data Generator:")
validation_datagen = ImageDataGenerator(rescale=1. / 255)
valid_generator = validation_datagen.flow_from_directory(
validate_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
print("")
# Test Datagen
print("Initializing Test Data Generator:")
test_datagen = ImageDataGenerator(rescale=1. / 255)
test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical')
print("")
# Run
print("Starting Training...")
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=valid_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=2)
print("Done!\n\n")
# Save Weights
model.save('model.h5')
# Evaluate
print("Starting Testing...")
print("[Loss, Percent Error]")
model.evaluate_generator(test_generator)
这是输出:
Using TensorFlow backend.
Initializing Training Data Generator:
Found 5600 images belonging to 7 classes.
Initializing Validation Data Generator:
Found 700 images belonging to 7 classes.
Initializing Test Data Generator:
Found 700 images belonging to 7 classes.
Starting Training...
Epoch 1/30
- 58s - loss: 1.8719 - categorical_accuracy: 0.2279 - top_2_categorical_accuracy: 0.4107 - val_loss: 1.8315 - val_categorical_accuracy: 0.2809 - val_top_2_categorical_accuracy: 0.4456
Epoch 2/30
- 53s - loss: 1.7584 - categorical_accuracy: 0.2913 - top_2_categorical_accuracy: 0.4714 - val_loss: 1.6551 - val_categorical_accuracy: 0.3485 - val_top_2_categorical_accuracy: 0.5559
Epoch 3/30
- 53s - loss: 1.6987 - categorical_accuracy: 0.3166 - top_2_categorical_accuracy: 0.5150 - val_loss: 1.6445 - val_categorical_accuracy: 0.3897 - val_top_2_categorical_accuracy: 0.5735
Epoch 4/30
- 53s - loss: 1.6495 - categorical_accuracy: 0.3407 - top_2_categorical_accuracy: 0.5418 - val_loss: 1.5398 - val_categorical_accuracy: 0.3868 - val_top_2_categorical_accuracy: 0.6029
Epoch 5/30
- 53s - loss: 1.5844 - categorical_accuracy: 0.3687 - top_2_categorical_accuracy: 0.5729 - val_loss: 1.5124 - val_categorical_accuracy: 0.4162 - val_top_2_categorical_accuracy: 0.5985
Epoch 6/30
- 53s - loss: 1.4989 - categorical_accuracy: 0.4075 - top_2_categorical_accuracy: 0.6132 - val_loss: 1.5065 - val_categorical_accuracy: 0.3956 - val_top_2_categorical_accuracy: 0.6029
Epoch 7/30
- 53s - loss: 1.4233 - categorical_accuracy: 0.4314 - top_2_categorical_accuracy: 0.6416 - val_loss: 1.4560 - val_categorical_accuracy: 0.4618 - val_top_2_categorical_accuracy: 0.6441
Epoch 8/30
- 53s - loss: 1.3212 - categorical_accuracy: 0.4754 - top_2_categorical_accuracy: 0.6770 - val_loss: 1.4556 - val_categorical_accuracy: 0.4324 - val_top_2_categorical_accuracy: 0.6309
Epoch 9/30
- 53s - loss: 1.2623 - categorical_accuracy: 0.4993 - top_2_categorical_accuracy: 0.7055 - val_loss: 1.5422 - val_categorical_accuracy: 0.4397 - val_top_2_categorical_accuracy: 0.6279
Epoch 10/30
答案 0 :(得分:0)
发生这种情况的原因有两个:
使用steps_per_epoch=nb_train_samples // batch_size
意味着它只会在batch_size
个时代之后看到整个集合。
未设置shuffle
选项。
结果,该模型正在学习投票给某个特定的课程。虽然这不是一个“错误”。可以这么说,在一个时代的结束时,准确度如此之高是令人担忧的。