我的模型定义如下:
def build(data):
model = Sequential()
model.add(Cropping2D(cropping=((79, 145), (50, 250)), input_shape=
(160,320,3)))
model.add(Lambda(lambda x: x/127.5 - 1.0))
model.add(Conv2D(24, (2, 2), padding='same'))
model.add(ELU())
model.add(Conv2D(36, (2, 2), padding='same'))
model.add(ELU())
model.add(Conv2D(48, (2, 2), padding='same'))
model.add(ELU())
# Add a flatten layer
model.add(Flatten())
model.summary()
model.add(Dense(100))
model.add(ELU())
model.add(Dense(50))
model.add(ELU())
model.add(Dense(10))
model.add(ELU())
model.add(Dense(1))
return model
出现此错误:
ValueError:
Dense
输入的最后一个维度应该是 定义。找到None
。
我跑了model.summary()
并获得了以下输出
Layer (type) Output Shape Param #
=================================================================
cropping2d_15 (Cropping2D) (None, 0, 20, 3) 0
_________________________________________________________________
lambda_23 (Lambda) (None, 0, 20, 3) 0
_________________________________________________________________
conv2d_47 (Conv2D) (None, 0, 20, 24) 312
_________________________________________________________________
elu_43 (ELU) (None, 0, 20, 24) 0
_________________________________________________________________
conv2d_48 (Conv2D) (None, 0, 20, 36) 3492
_________________________________________________________________
elu_44 (ELU) (None, 0, 20, 36) 0
_________________________________________________________________
conv2d_49 (Conv2D) (None, 0, 20, 48) 6960
_________________________________________________________________
elu_45 (ELU) (None, 0, 20, 48) 0
_________________________________________________________________
flatten_12 (Flatten) (None, None) 0
=================================================================
Total params: 10,764
Trainable params: 10,764
Non-trainable params: 0
我对python很新,任何输入都会受到赞赏。
答案 0 :(得分:0)
您过多地裁剪了输入图像。 cropping
参数为interpreted,如下所示:
如果2个元组中2个整数的元组:解释为(((top_crop, bottom_crop),(left_crop,right_crop))
请考虑Keras文档中的以下示例:
# Crop the input 2D images or feature maps
model = Sequential()
model.add(Cropping2D(cropping=((2, 2), (4, 4)),
input_shape=(28, 28, 3)))
# now model.output_shape == (None, 24, 20, 3)
在代码中,您正在从顶部裁剪79像素,从底部裁剪145像素,而图像的高度仅为160像素。通过减少裁剪,您的代码可以正常运行,例如:
model.add(Cropping2D(cropping=((10, 10), (10, 10)), input_shape=(160,320,3)))