我正在尝试创建张量流层。
此时,目标非常简单。在我的自定义图层中,我想将输入乘以2。 因此,每次输入通过自定义图层时,都应执行以下操作
input = 2 * input //只需将输入乘以2
我正在使用以下代码。
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def add_layer(inputs, out_size, activation_function=None):
in_size = int(inputs.shape[1])
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
inputs_temp = inputs.eval(session=tf.Session())
############# Do changes to input. Like input = 2 * input #################
inputs = tf.convert_to_tensor(inputs)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
sess = tf.InteractiveSession()
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={xs: v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
return result
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
ys = tf.placeholder(tf.float32, [None, 10])
# Network
network = tflearn.flatten(xs)
network = add_layer(network, 256)
network = tflearn.reshape(network, (-1, 16, 16, 1))
network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
network = tflearn.flatten(network)
prediction = add_layer(network, 10, activation_function=tf.nn.softmax)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(0.3).minimize(cross_entropy)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
if i % 50 == 0:
print(compute_accuracy(
mnist.test.images, mnist.test.labels))
行inputs_temp = inputs.eval(session=tf.Session())
出现以下错误
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype float and shape [?,784]
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[?,784], _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]
[[Node: Flatten/Reshape/_1 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_7_Flatten/Reshape", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
我认为错误与会话有关。是否可以访问自定义图层中的输入来操作它们?
答案 0 :(得分:1)
您的评论似乎刚开始学习Tensorflow。如果是这种情况,我强烈建议您查看Tensorflow" Eager模式"。具体来说,"Programmers Guide"和YouTube videos。这些是由Tensorflow团队提供的,他们非常有帮助。