有效地在GeoSpark中对spatialRDD进行空间分区吗? 例如:使用GeoSpark或类似的东西将多个点彼此靠近的分区放在1个分区中?
答案 0 :(得分:1)
作为Georg评论的扩展,我想向您展示一个使用QuadTree的示例。尚未使用其余分区方法,但我希望它们的行为相同(当然,实际分区除外)。假设您要分区的变量是pointsRDD
(在我的情况下实际上是PointRDD类型的对象),则可以按以下方式进行操作:
import com.vividsolutions.jts.index.quadtree.Quadtree
import com.vividsolutions.jts.index.SpatialIndex
val buildOnSpatialPartitionedRDD = true // Set to TRUE only if run join query
val numPartitions = 48
pointsRDD.analyze()
pointsRDD.spatialPartitioning(GridType.QUADTREE, numPartitions)
pointsRDD.buildIndex(IndexType.QUADTREE, buildOnSpatialPartitionedRDD)
您将在pointsRDD.spatialPartitionedRDD.rdd
中找到分区数据:
pointsRDD
.spatialPartitionedRDD
.rdd
.mapPartitions(yourFunctionYouWantToRunOnEachPartition)
您可以通过参考分区树来检查分区:
pointsRDD.partitionTree.getAllZones.asScala.foreach(println)
将会产生类似
x: 15.857028 y: 53.36364 w: 9.872338000000003 h: 2.7383549999999985 PartitionId: null Lineage: null
x: 15.857028 y: 54.732817499999996 w: 4.936169000000001 h: 1.3691774999999993 PartitionId: null Lineage: null
x: 15.857028 y: 55.41740625 w: 2.4680845000000007 h: 0.6845887499999996 PartitionId: null Lineage: null
x: 15.857028 y: 55.759700625 w: 1.2340422500000003 h: 0.3422943749999998 PartitionId: null Lineage: null
x: 15.857028 y: 55.9308478125 w: 0.6170211250000002 h: 0.1711471874999999 PartitionId: 0 Lineage: null
...
可以使用您喜欢的绘图工具将其可视化(抱歉,不能包含此代码)
要检查分区统计信息,请使用以下代码:
import org.apache.spark.sql.functions._
pointsRDD
.spatialPartitionedRDD
.rdd
.mapPartitionsWithIndex{case (i,rows) => Iterator((i,rows.size))}
.toDF("partition_number","number_of_records")
.show()
这将为您提供:
+----------------+-----------------+
|partition_number|number_of_records|
+----------------+-----------------+
| 0| 8240|
| 1| 7472|
| 2| 5837|
| 3| 3753|
+----------------+-----------------+
only showing top 4 rows
答案 1 :(得分:0)