我是Python和Tensorflow的新手,我在训练阶段后从NN获取值时遇到了一些困难。
import tensorflow as tf
import numpy as np
import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)
n_nodes_hl1 = 50
n_nodes_hl2 = 50
n_classes = 10
batch_size = 128
x = tf.placeholder('float',[None, 784])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,n_nodes_hl1]),name='weights1'),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]),name='biases1')}
hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2]),name='weights2'),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]),name='biases2')}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_classes]),name='weights3'),
'biases': tf.Variable(tf.random_normal([n_classes]),name='biases3')}
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']) , hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']) , hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
output = tf.add(tf.matmul(l2, output_layer['weights']) , output_layer['biases'])
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction,labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 100
init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer() )
with tf.Session() as sess:
sess.run(init)
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples / batch_size)) :
ep_x, ep_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict = {x: ep_x, y: ep_y})
epoch_loss += c
print('Epoch', epoch+1, 'completed out of', hm_epochs, 'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x:mnist.test.images, y: mnist.test.labels}))
train_neural_network(x)
我尝试使用以下方法从第1层中提取权重:
w = tf.get_variable('weights1',shape=[784,50])
b = tf.get_variable('biases1',shape=[50,])
myWeights, myBiases = sess.run([w,b])
但是抛出错误Attempting to use uninitialized value weights1_1
这是因为我的变量是dict类型'hidden_1_layer'吗?
我对Python和Tensorflow数据类型不太熟悉,所以我完全混淆了!
答案 0 :(得分:1)
使用以下代码:
tensor_1 = tf.get_default_graph().get_tensor_by_name("weights1:0")
tesnor_2 = tf.get_default_graph().get_tensor_by_name("biases1:0")
sess = tf.Session()
np_arrays = sess.run([tensor_1, tensor_2])
还有其他方法可以存储变量以供以后使用或分析。请说明您提取重量和偏差的目的。如果需要进一步讨论,请进一步评论。
答案 1 :(得分:0)
写作时
w = tf.get_variable('weights1',shape=[784,50])
b = tf.get_variable('biases1',shape=[50,])
您定义 2个新变量:
weights1
变为weights1_1
biases1
变为biases1_1
因为名称中存在名称为weights1
和biases1
的变量,所以tensorflow会为您添加_<counter>
后缀,以避免命名冲突。
如果您想为现有变量创建参考,您必须熟悉variable scope的概念。
简而言之,您必须明确表示要重复使用某个变量,并且可以使用[tf.variable_scope
] 2及其重用参数来执行此操作。
scope_name = "" #default scope
with tf.variable_scope(scope_name, reuse=True):
w = tf.get_variable('weights1',shape=[784,50])
b = tf.get_variable('biases1',shape=[50,])