我和Caffe玩了很长时间但从未做过多标签分类,而且我似乎陷入困境:
train_lmdb
,val_lmdb
),标签(labels_train_lmdb
,labels_val_lmdb
)和平均值({{1} })Caffe-LMDBCreation-MultiLabel。我期望至少从火车数据集中获取图像,例如:
img1.jpg 0 0 0 1 0 0 0
对其进行分类,其值类似于[0.0,1.0,0.0,0.0,0.0,0.0,0.0]
对于上面的图片(img1.jpg),我有这些类型的结果:
mean_lmdb.binaryproto
没有意义。我尝试了几个快照(每10000次迭代一次),结果相似,所有快照都接近0.50
[0.48112139105796814, 0.5486980676651001, 0.5396456122398376, 0.44233766198158264, 0.5605107545852661, 0.3539462387561798, 0.5215630531311035]
train_val.prototxt
prototxt
deploy.prototxt :
name: "multi-class-alexnet"
# --------------------------------- TRAIN -------------------------------
# -----------------------------------------------------------------------
layer {
name: "data"
type: "Data"
top: "data"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 180
mean_file: "./mean_lmdb.binaryproto"
}
data_param {
source: "./train_lmdb"
batch_size: 64
backend: LMDB
}
}
# ---------------------------- TRAIN LABELS -----------------------------
# -----------------------------------------------------------------------
layer {
name: "data"
type: "Data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
mean_value: 0
}
data_param {
source: "./labels_train_lmdb"
batch_size: 64
backend: LMDB
}
}
# ---------------------------------- VAL --------------------------------
# -----------------------------------------------------------------------
layer {
name: "data"
type: "Data"
top: "data"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 180
mean_file: "./mean_lmdb.binaryproto"
}
data_param {
source: "./val_lmdb"
batch_size: 32
backend: LMDB
}
}
# ----------------------------- VAL LABELS ------------------------------
# -----------------------------------------------------------------------
layer {
name: "data"
type: "Data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
mean_value: 0
}
data_param {
source: "./labels_val_lmdb"
batch_size: 32
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6_"
type: "InnerProduct"
bottom: "pool5"
top: "fc6_"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6_"
top: "fc6_"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6_"
top: "fc6_"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6_"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "latent"
type: "InnerProduct"
bottom: "fc7"
top: "latent"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 48
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "latent"
top: "latent_sigmoid"
name: "latent_sigmoid"
type: "Sigmoid"
}
layer {
name: "fc9"
type: "InnerProduct"
bottom: "latent_sigmoid"
top: "fc9"
param {
lr_mult: 10
decay_mult: 1
}
param {
lr_mult: 20
decay_mult: 0
}
inner_product_param {
num_output: 7
weight_filler {
type: "gaussian"
std: 0.2
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "MultiLabelAccuracy"
bottom: "fc9"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
# ----------------------------------------------------------------
# ----------------- Multi-label Loss Function -------------------
# ----------------------------------------------------------------
layer {
name: "loss"
type: "SigmoidCrossEntropyLoss"
bottom: "fc9"
bottom: "label"
top: "loss"
}
name: "multi-class-alexnet"
input: "data"
input_shape {
dim: 10
dim: 3
dim: 180
dim: 180
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6_"
type: "InnerProduct"
bottom: "pool5"
top: "fc6_"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6_"
top: "fc6_"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6_"
top: "fc6_"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6_"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "latent_"
type: "InnerProduct"
bottom: "fc7"
top: "latent_"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 7
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
bottom: "latent_"
top: "latent_sigmoid"
name: "latent_sigmoid"
type: "Sigmoid"
}
(超过110000次迭代):输出#0 :
I0427 10:20:04.475754 1817 solver.cpp:238]火车净输出#0:损失= 0.0867133(* 1 = 0.0867133损失)
I0427 10:20:38.257825 1817 solver.cpp:238]火车净输出#0:损失= 0.0477974(* 1 = 0.0477974损失)
I0427 10:21:11.794013 1817 solver.cpp:238]火车净输出#0:损失= 0.0390092(* 1 = 0.0390092损失)
I0427 10:21:45.620671 1817 solver.cpp:238]火车净输出#0:损失= 0.039954(* 1 = 0.039954损失)
I0427 10:22:19.271747 1817 solver.cpp:238]火车净输出#0:损失= 0.0477802(* 1 = 0.0477802损失)
I0427 10:22:53.160802 1817 solver.cpp:238]列车净输出#0:损失= 0.0406158(* 1 = 0.0406158损失)
I0427 10:23:26.843694 1817 solver.cpp:238]火车净输出#0:损失= 0.0355715(* 1 = 0.0355715损失)
I0427 10:24:31.727321 1817 solver.cpp:238]火车净输出#0:损失= 0.0396538(* 1 = 0.0396538损失)
I0427 10:25:05.019598 1817 solver.cpp:238]火车净输出#0:损失= 0.037121(* 1 = 0.037121损失)
I0427 10:25:38.730303 1817 solver.cpp:238]火车净输出#0:损失= 0.0362058(* 1 = 0.0362058损失)
输出#5 :
I0427 09:26:52.251719 1817 solver.cpp:398]测试净输出#5:损失= 6.98116(* 1 = 6.98116损失)
I0427 09:33:01.639736 1817 solver.cpp:398]测试净输出#5:损失= 6.99285(* 1 = 6.99285损失)
I0427 09:39:09.991879 1817 solver.cpp:398]测试净输出#5:损失= 7.02165(* 1 = 7.02165损失)
I0427 09:45:18.013739 1817 solver.cpp:398]测试净输出#5:损失= 7.01533(* 1 = 7.01533损失)
I0427 09:51:27.065721 1817 solver.cpp:398]测试净输出#5:损失= 7.02347(* 1 = 7.02347损失)
I0427 09:58:13.271441 1817 solver.cpp:398]测试净输出#5:损失= 6.98176(* 1 = 6.98176损失)
I0427 10:05:31.896226 1817 solver.cpp:398]测试净输出#5:损失= 6.99103(* 1 = 6.99103损失)
I0427 10:12:12.693677 1817 solver.cpp:398]测试净输出#5:损失= 7.02868(* 1 = 7.02868损失)
I0427 10:18:23.250385 1817 solver.cpp:398]测试净输出#5:损失= 7.03427(* 1 = 7.03427损失)
I0427 10:24:31.239820 1817 solver.cpp:398]测试净输出#5:损失= 6.97721(* 1 = 6.97721损失)