我正在使用自定义估算器api编写二进制分类器,代码如下。
我想尝试使用不同的损失函数,下面的代码运行sigmoid_cross_entropy或sparse_softmax_cross_entropy调用。但是当我尝试mean_squared_error时,我得到一个堆栈跟踪
ValueError: No gradients provided for any variable, check your graph for ops that do not support gradients, between variables ["<tf.Variable 'dense/kernel:0' shape=(350, 18) dtype=float32_ref>", "<tf.Variable 'dense/bias:0' shape=(18,) dtype=float32_ref>", "<tf.Variable 'OUTPUT/kernel:0' shape=(18, 2) dtype=float32_ref>", "<tf.Variable 'OUTPUT/bias:0' shape=(2,) dtype=float32_ref>"] and loss Tensor("mean_squared_error/value:0", shape=(), dtype=float32).
这是代码,我怀疑是一些新手的错误。 任何见解将不胜感激。 THX
# input layer
net = tf.feature_column.input_layer( features, params['feature_columns'] )
# hidden layer 1
net = tf.layers.dense(net, units=18, activation=tf.nn.relu)
# output layer computes logits
logits = tf.layers.dense(net, params['n_classes'], activation=None, name='OUTPUT')
# sigmoid cross entropy
#multi_class_labels = tf.one_hot( labels, 2 )
#loss = tf.losses.sigmoid_cross_entropy(multi_class_labels=multi_class_labels, logits=logits)
# sparse softmax cross entropy
# loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# mean squared error
predicted_classes = tf.argmax(logits, 1)
loss = tf.losses.mean_squared_error(labels=labels, predictions=predicted_classes)
# TRAINING MODE
assert mode == tf.estimator.ModeKeys.TRAIN
optimizer = tf.train.AdagradOptimizer(learning_rate=0.1)
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
这个demo_model自定义估算器就像这样调用
classifier = tf.estimator.Estimator(
model_fn=demo_model,
model_dir=cur_model_dir,
params={
'feature_columns': feature_columns,
# The model must choose between 2 classes.
'n_classes': 2
})
答案 0 :(得分:4)
问题是tf.argmax
没有定义的渐变。您仍然可以使用平均误差来比较logits与one-hot编码标签:
loss = tf.losses.mean_squared_error(labels=tf.one_hot(labels, 2), predictions=logits)