我正在尝试学习如何使用Twitter数据进行一些文本分析。我在创建Term Frequency Matrix时遇到了问题。 我用西班牙语文本(带有特殊字符)创建语料库,没有任何问题。
然而,当我创建Term Frequency Matrix(使用quanteda或tm库)时,西班牙语字符不会按预期显示(而不是看canción,我看到canción)。
有关如何让Term Frequency Matrix以正确的字符存储文字的任何建议?
感谢您的帮助。
作为一个注释:我更喜欢使用quanteda库,因为最终我将创建一个wordcloud,我想我更好地理解这个库的方法。我也在使用Windows机器。
我尝试过编码(tw2)< - “UTF-8”没有运气。
library(dplyr)
library(tm)
library(quanteda)
#' Creating a character with special Spanish characters:
tw2 <- "RT @None: Enmascarados, si masduro chingán a tarek. Si quieres ahora, la aguantas canción . https://t."
#Cleaning the tweet, removing special punctuation, numbers http links,
extra spaces:
clean_tw2 <- tolower(tw2)
clean_tw2 = gsub("&", "", clean_tw2)
clean_tw2 = gsub("(rt|via)((?:\\b\\W*@\\w+)+)", "", clean_tw2)
clean_tw2 = gsub("@\\w+", "", clean_tw2)
clean_tw2 = gsub("[[:punct:]]", "", clean_tw2)
clean_tw2 = gsub("http\\w+", "", clean_tw2)
clean_tw2 = gsub("[ \t]{2,}", "", clean_tw2)
clean_tw2 = gsub("^\\s+|\\s+$", "", clean_tw2)
# creates a vector with common stopwords, and other words which I want removed.
myStopwords <- c(stopwords("spanish"),"tarek","vez","ser","ahora")
clean_tw2 <- (removeWords(clean_tw2,myStopwords))
# If we print clean_tw2 we see that all the characters are displayed as expected.
clean_tw2
#'Create Corpus Using quanteda library
corp_quan<-corpus(clean_tw2)
# The corpus created via quanteda, displays the characters as expected.
corp_quan$documents$texts
#'Create Corpus Using TD library
corp_td<-Corpus(VectorSource(clean_tw2))
#' Remove common words from spanish from the Corpus.
#' If we inspect the corp_td, we see that the characters and words are displayed correctly
inspect(corp_td)
# Create the DFM with quanteda library.
tdm_quan<-dfm(corp_quan)
# Here we see that the spanish characters are displayed incorrectly for Example: canción = canción
tdm_quan
# Create the TDM with TD library
tdm_td<-TermDocumentMatrix(corp_td)
# Here we see that the Spanish characters are displayed incorrectly (e.g. canción = canciÃ), and "si" is missing.
tdm_td$dimnames$Terms
答案 0 :(得分:1)
让我猜一下......你在使用Windows吗?在macOS上它工作正常:
clean_tw2
## [1] "enmascarados si masduro chingán si quieres aguantas canción"
Encoding(clean_tw2)
## [1] "UTF-8"
dfm(clean_tw2)
## Document-feature matrix of: 1 document, 7 features (0% sparse).
## 1 x 7 sparse Matrix of class "dfm"
## features
## docs enmascarados si masduro chingán quieres aguantas canción
## text1 1 2 1 1 1 1 1
我的系统信息:
sessionInfo()
# R version 3.4.4 (2018-03-15)
# Platform: x86_64-apple-darwin15.6.0 (64-bit)
# Running under: macOS High Sierra 10.13.4
#
# Matrix products: default
# BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
#
# locale:
# [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] tm_0.7-3 NLP_0.1-11 dplyr_0.7.4 quanteda_1.1.6
答案 1 :(得分:1)
在Windows平台上创建DFM时,看起来quanteda(和tm)正在丢失编码。在this tidytext问题中,使用取消令牌时会出现同样的问题。现在哪个工作正常,quanteda
的{{1}}工作正常。
如果我对tokens
的{{1}}强制执行UTF-8
或latin1
编码,您将获得正确的结果。
@Dimnames$features
如果您执行以下操作:
dfm