在lapply中将列传递给“with”

时间:2018-04-25 07:59:06

标签: r lapply with-statement

如何在lapply来电中将数据框的列传递给lapply(data[ , grepl( "Measured." , names( data ) ) ], with, (. <= 5 & . >= 1) | . == 4244) lapply(data[ , grepl( "Measured." , names( data ) ) ], function(x) with((x <= 5 & x >= 1) | x == 4244)) 函数?

我尝试了这些并且它们不起作用!

Measured.

我正在尝试查看1列中的值是否介于54244之间,还接受data <- structure(list(ID = 1:10, Date = c(2018L, 2018L, 2018L, 2015L, 2018L, 2015L, 2015L, 2014L, 2014L, 2014L), Gender = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L), .Label = c("F", "M"), class = "factor"), Measured.1 = c(1L, 7L, 1L, 6L, 6L, 2L, 5L, 4L, 2L, 6L), Measured.2 = c(9L, 2L, 4L, 5L, 2L, 3L, 6L, 3L, 7L, 7L), Measured.3 = c(9L, 4L, 35L, 3L, 4L, 2L, 2L, 1L, 3L, 4L), Measured.4 = c(12L, 8L, 50L, 7L, 2L, 6L, 2L, 2L, 1L, 2L), Text = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L), .Label = c("N", "Y"), class = "factor"), Test = c(5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L)), .Names = c("ID", "Date", "Gender", "Measured.1", "Measured.2", "Measured.3", "Measured.4", "Text", "Test"), class = "data.frame", row.names = c(NA, -10L ))

示例数据集:

   ID Date Gender Measured.1 Measured.2 Measured.3 Measured.4 Text Test
1   1 2018      M          1          9          9         12    N    5
2   2 2018      M          7          2          4          8    N    5
3   3 2018      M          1          4         35         50    N    5
4   4 2015      M          6          5          3          7    N    5
5   5 2018      M          6          2          4          2    N    5
6   6 2015      M          2          3          2          6    Y    6
7   7 2015      F          5          6          2          2    Y    6
8   8 2014      F          4          3          1          2    Y    6
9   9 2014      F          2          7          3          1    N    6
10 10 2014      F          6          7          4          2    N    6

及其输出:

{{1}}

2 个答案:

答案 0 :(得分:1)

除了基础R,您可以使用dplyr解决方案:

library(dplyr)
data %>%
  filter_at(vars(starts_with("Measured")), 
            any_vars((. >= 1 & . <= 5) | . == 4244))

这将查找记录,其中Measured列中至少一个的值介于1和5或4244之间。
如果您想要限制并且所有值都必须在此范围内,您可以将其更改为:

data %>%
  filter_at(vars(starts_with("Measured")), 
            all_vars((. >= 1 & . <= 5) | . == 4244))

<小时/> 前者产生

   ID Date Gender Measured.1 Measured.2 Measured.3 Measured.4 Text Test
1   1 2018      M          1          9          9         12    N    5
2   2 2018      M          7          2          4          8    N    5
3   3 2018      M          1          4         35         50    N    5
4   4 2015      M          6          5          3          7    N    5
5   5 2018      M          6          2          4          2    N    5
6   6 2015      M          2          3          2          6    Y    6
7   7 2015      F          5          6          2          2    Y    6
8   8 2014      F          4          3          1          2    Y    6
9   9 2014      F          2          7          3          1    N    6
10 10 2014      F          6          7          4          2    N    6

而后者产生

  ID Date Gender Measured.1 Measured.2 Measured.3 Measured.4 Text Test
1  8 2014      F          4          3          1          2    Y    6

<小时/> 使用基础R可以更快(但非常不易读)的方式完成相同的操作: 您可以使用基本R方法和面具apply

# set up the cols of interest
colmask <- grepl("^Measured", names(data))

# apply the function rowwise (=1)
rowmask <- apply(data[colmask], 1, function(col) {
  any(((col >= 1 & col <= 5) | col == 4244))
})
data[rowmask,]

或者

colmask <- grepl("^Measured", names(data))
rowmask <- apply(data[colmask], 1, function(col) {
  all(((col >= 1 & col <= 5) | col == 4244))
})
data[rowmask,]

显然,这会产生相同的结果。

答案 1 :(得分:1)

使用基数R,您可以提取符合以下条件的行:

data[data[,1][data[,4] >= 1 & data[,4] <= 5 & data[,5] >= 1 & data[,5] <= 5 & data[,6] >= 1 & data[,6] <= 5 & data[,7] >= 1 & data[,7] <= 5 | data[,4] == 4244 | data[,5] == 4244 | data[,6] == 4244 | data[,7] == 4244],]

我使用&创建附加条件(您正在查找测量的行数,测量值2,测量值3和测量值4均为{{1} }和>= 1)和<= 5创建替代标准(任何测量值为|):

,并提供:

4424

它不是最漂亮的代码片段,但是(根据microbenchmark)它的运行速度比Jan的dplyr方法快43倍。