我搜索并找到类似的问题,但可以使其适用于我的数据。
我有一个包含开始和结束日期的数据框,以及其他一些因素。理想情况下,行的开始日期应该在任何前一行的结束日期之后,但数据具有重复的开始或结束,有时日期的间隔重叠。
我试图制作一个可重现的例子:
df = data.frame(start=c("2018/04/15 9:00:00","2018/04/15 9:00:00","2018/04/16 10:20:00","2018/04/16 15:30:00",
"2018/04/17 12:40:00","2018/04/17 18:50:00"),
end=c("2018/04/16 8:00:00","2018/04/16 7:10:00","2018/04/17 18:20:00","2018/04/16 16:30:00",
"2018/04/17 16:40:00","2018/04/17 19:50:00"),
value=c(10,15,11,13,14,12))
我能够删除重复的(结束日期或开始日期),但我无法删除重叠的间隔。我想创建一个“清理”任何更大区间内包含的区间的循环。所以结果如下:
result = df[c(1,3,6),]
我以为我可以创建一个“清理”重复项和重叠区间的循环,但我无法使其正常工作。
有什么建议吗?
答案 0 :(得分:1)
data.table
包适用于使用重叠连接函数foverlaps
(受Bioconductor包IRanges中的findOverlaps函数启发)的这类问题,然后是反连接(data.table语法是B[!A, on]
)删除那些内部间隔。
library(data.table)
cols <- c("start", "end")
setDT(df)
df[, (cols) := lapply(.SD, function(x) as.POSIXct(x, format="%Y/%m/%d %H:%M:%S")), .SDcols=cols]
setkeyv(df, cols)
anti <- foverlaps(df, df, type="within")[start!=i.start | end!=i.end | value!=i.value]
df[!anti, on=.(start=i.start, end=i.end, value=i.value)]
# start end value
# 1: 2018-04-15 09:00:00 2018-04-16 08:00:00 10
# 2: 2018-04-16 10:20:00 2018-04-17 18:20:00 11
# 3: 2018-04-17 18:50:00 2018-04-17 19:50:00 12
答案 1 :(得分:1)
替代方法是使用%within%
包的lubridate()
:
library(lubridate)
# transform characters to dates
start_time <- as_datetime(df[ , "start"], tz = "UTC")
end_time <- as_datetime(df[ , "end"], tz = "UTC")
# construct intervals
start_end_intrvls <- interval(start_time, end_time)
# find indices of the non-within intervals
not_within <- !(sapply(FUN = function(i) any(start_end_intrvls[i] %within% start_end_intrvls[-i]),
X = seq(along.with = df[ , "start"])))
df[not_within, ]
# start end value
# 1 2018/04/15 9:00:00 2018/04/16 8:00:00 10
# 3 2018/04/16 10:20:00 2018/04/17 18:20:00 11
# 6 2018/04/17 18:50:00 2018/04/17 19:50:00 12
as_datetime()
函数在应用于tibble时会导致错误:
as_datetime(tibble("2018/04/15 9:00:00"), tz = "UTC")
Error in as.POSIXct.default(x) : do not know how to convert 'x' to class “POSIXct”
可以修改上述解决方案以使用as_datetime()
替换as.POSIXlt()
来解决此问题:
df_tibble <- tibble(start=c("2018/04/15 9:00:00","2018/04/15 9:00:00","2018/04/16 10:20:00",
"2018/04/16 15:30:00", "2018/04/17 12:40:00","2018/04/17 18:50:00"),
end=c("2018/04/16 8:00:00","2018/04/16 7:10:00","2018/04/17 18:20:00","2018/04/16 16:30:00",
"2018/04/17 16:40:00","2018/04/17 19:50:00"), value=c(10,15,11,13,14,12))
start_time_lst <- lapply(FUN = function(i) as.POSIXlt(as.character(df_tibble[i , "start"]),
tz = "UTC"),
X = seq(along.with = unlist(df_tibble[ , "start"])))
end_time_lst <- lapply(FUN = function(i) as.POSIXlt(as.character(df_tibble[ i, "end"]),
tz = "UTC"),
X = seq(along.with = unlist(df_tibble[ , "end"])))
start_end_intrvls <- lapply(function(i) interval(start_time_lst[[i]] , end_time_lst[[i]]),
X = seq(along.with = unlist(df_tibble[ , "start"])))
not_within <- sapply(function(i) !(any(unlist(Map(`%within%`,
start_end_intrvls[[i]], start_end_intrvls[-i])))),
X = seq(along.with = unlist(df_tibble[ , "start"])))