我想计算实现为fractions.Fraction
个实例的两个有理数的最大公约数。虽然打印了弃用警告,但它按预期工作:
In [1]: gcd(Fraction(2, 3), Fraction(2, 3))
/usr/local/bin/ipython:1: DeprecationWarning: fractions.gcd() is deprecated. Use math.gcd() instead.
#!/usr/local/opt/python3/bin/python3.6
Out[1]: Fraction(1, 6)
查看documentation我可以看到fractions.gcd()
确实已弃用,并且邀请用户使用math.gcd()
。问题是后者不支持有理数:
In [2]: gcd(Fraction(2, 3), Fraction(2, 3))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-2-c3ad2389f290> in <module>()
----> 1 gcd(Fraction(2, 3), Fraction(2, 3))
TypeError: 'Fraction' object cannot be interpreted as an integer
我可以使用哪种功能代替fractions.gcd()
?我不是在寻找这里使用的实际算法,而是替换已弃用的函数。
正如@glibdud在他的评论中所提到的,将fractions.gcd()
与有理数一起使用并不是预期的行为,当然也没有记录......并且可以使用以下方法轻松实现:
def gcd(numbers):
"""Compute Greastest Common Divisor of rational numbers.
Args:
numbers: list of rational numbers.
Returns:
Greatest Common Divisor of rational numbers.
"""
# Treat the two-number case and reduce
def _gcd(a, b):
if b == 0:
return a
if isinstance(a, int) and isinstance(b, int):
_gcd(b, a % b)
a = Fraction(a)
b = Fraction(b)
return Fraction(gcd([a.numerator, b.numerator]), lcm([a.denominator, b.denominator]))
return reduce(_gcd, numbers)
def lcm(numbers):
"""Compute Least Common Multiple of rational numbers.
Args:
numbers: list of rational numbers.
Returns:
Least Common Multiple of rational numbers.
"""
# Treat the two-number case and reduce
def _lcm(a, b):
if b == 0:
return a
if isinstance(a, int) and isinstance(b, int):
return a * b // gcd([a, b])
a = Fraction(a)
b = Fraction(b)
return Fraction(lcm([a.numerator, b.numerator]), gcd([a.denominator, b.denominator]))
return reduce(_lcm, numbers)
公式在此处得出并解释:https://math.stackexchange.com/questions/44836/rational-numbers-lcm-and-hcf。
答案 0 :(得分:2)
你可能要写一个。 gcd(a/b, c/d) = gcd(a, c)/lcm(b, d)
,所以这不是太糟糕。 math
并未提供lcm
,因此我使用的是here。
from fractions import Fraction
from math import gcd
def lcm(a, b):
"""Return lowest common multiple."""
return a * b // gcd(a, b)
def fraction_gcd(x, y):
a = x.numerator
b = x.denominator
c = y.numerator
d = y.denominator
return Fraction(gcd(a, c), lcm(b, d))
print(fraction_gcd(Fraction(2, 3), Fraction(2, 3)))
# 2/3